Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5708
標題: 改質鉑電極觸媒以提升質子交換膜燃料電池之CO抵抗能力研究
Modification of Pt electrocatalysts to improve the tolerance of CO in proton membrane fuel cells
作者: 林依杏
Lin, Yi-Shing
關鍵字: Fuel cell
燃料電池
Electrocatalysis
Carbon surface groups
CO tolerance
電極觸媒
碳表面官能基
一氧化碳抵抗
出版社: 環境工程學系所
引用: 王虎平,廖小珍,蔣淇忠,馬紫峰,“質子交換模燃料電池中抗CO中毒的PtM陽極催化劑”,化工進展,第22卷,第11期,第1186-1189頁,2003。 江懷德,“溫室氣體減量與新能源科技”,物理雙月刊,NO.29,第629-634頁,2007。 江文鉅,林永清,“綠色能源科技─淺談燃料電池”,生活科技教育月刊,No.39,第四期,2006。 衣寶廉,“燃料電池─原理與應用”,五南圖書出版股份有限公司,2007。 李邦哲,“新能源的明日之星─燃料電池”,台灣綜合展望,NO.2,第131-140頁,2002。 李振彬,“直接甲醇燃料電池中陽極觸媒層效能之改良”,國立成功大學化學工程研究所,碩士論文,2005。 李軒誠“質子交換膜燃料電池研究—MEA 的製程與應用”,國立中山大學機械工程研究所,2001 。 呂玲儀,“多元醇法製備CuCo/Al2O3雙金屬觸媒對去除揮發性有機物之研究”,國立中興大學環境工程研究所,2007。 呂俊逸,“質子交換膜燃料電池研究—MEA的製造和性能分析”, 國立中山大學機械工程研究所,2000。 林子淵,“硫化氫毒化現象對質子交換膜燃料電池性能影響之暫態分析”,國立交通大學機械工程研究所,2005。 和慶鋼,馬紫峰,原鮮霞,蔣淇忠,吳衛生“質子交換膜燃料電池中碳納米管負載的氧電極材料製備與表徵”,材料科學與工程學報,第22卷,第5期,第653-656頁,2004。 周貝倫,“純化程序對奈米碳管表面特性影響之研究”,國立中央大學化學工程研究所,2006。 洪明子,崔明汕,“燃料電池發電技術”,吉林化工學院學報,第22卷,第三期,2005。 洪慧珊,“以旋轉圓盤電極分析燃料電池中陽極觸媒受CO毒化之影響”,元智大學化學工程研究所,2003。 秋承賢,張朝星,林修正,“燃料電池之電極與元件材料綜述”,化工,第53卷,第3期,第10-18頁,2006。 柯以侃 主編,儀器分析,文京圖書出版,1996。 紀景發,“以混合碳材為PtRu/ C觸媒擔體用於改良直接甲醇燃料電池中陽極觸媒層之效能”,國立成功大學化學工程研究所,2006。 翁芳柏,徐耀昇,“燃料電池實驗教材”,亞太燃料電池科技,第18-20頁,2006。 許寧逸,顏溪成,“由碳能朝向氫能的燃料電池”,科學發展,第367期,第6-11頁,2003。 陳彥仲, “燃料電池中CO毒化行為的紅外光譜分析”,元智大學化學工程研究所,2000。 陳孟震,“以含浸還原法製備PEMFC 膜電極組與電池之研究”,國立成功大學化學工程研究所,2000。 陳振源,“質子交換膜燃料電池之性能受MEA壓製壓力及進氣相對濕度影響之探討”,南台科技大學機械工程系,2004。 陳俊寬,“鍛燒溫度及鍛燒氣體於製備過渡金屬鈷觸媒催化甲苯之研究”,國立中興大學環境工程研究所,2007。 張雲河, 李新海,鄧凌峰,郭華勳,彭文傑 “質子交換模燃料電池的研究與應用進展”,材料導報,第18卷,第7期,第41-44頁,2004。 傅政豪,“以活性碳為擔體之觸媒/吸附劑應用於焚化廢氣SO2之研究”,國立中興大學環境工程研究所,2002。 廖怡萱,“質子交換膜燃料電池陰極觸媒合成、鑑定及活性測試”,元智大學化學工程研究所碩士論文,2004。 蔣淇忠,馬紫峰,“直接塗抹技術用於直子交換模燃料電池膜電極製備”,化工學報,第53卷,第3期,第488-492頁,2004。 廖振宇,尹庚鳴,“質子交換膜燃料電池”,化工,第53卷,第3期,第2-9頁,2006。 廖明祥,“質子交換膜燃料電池含溫濕度控制之參數最佳化分析與電池製作”, 國立中山大學機械與機電工程研究所,2002。 蔡嘉峯,“質子交換膜燃料電池氣體擴散層氧氣質傳之研究”,大葉大學機械工程研究所,2003。 熊居政,“奈米化白金觸媒在燃料電池之電極材料上佈置方法及電化學測試之研究”,中國文化大學材料科學與製造研究所,2004。 鄭耀宗,徐耀昇,“燃料電池技術進展的現況分析”,節約能源論文發表會論文專輯,第409-422頁,1999。 薛康琳,“Fuel Cells-Transportation Applications”,2008。 盧敏彥,“燃料電池電極觸媒(一)─高分子電解質膜燃料電池陽極觸媒”,CHEMISTRY,62卷,第1期,第139-148頁,2004。 顏貽乙,“微型燃料電池新選擇RMFC”,能源報導,第13期,第11-13頁,2006。 Arico A.S., Creti P., Giordano N., Antonucci V., Antonucci P.L., A., C., et al. (1996). Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C anode. Journal of Applied Electrochemistry, 26(9), 959-967. Antolini, E., Salgado, J. R. C., & Gonzalez, E. R. (2006). The stability of Pt-M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: A literature review and tests on a Pt-Co catalyst. Journal of Power Sources, 160(2), 957-968. Bethune D. S., & Kiang. C. H. (1993). Cobalt-caralyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605-607. Boyer, C., Gamburzev, S., Velev, O., Srinivasan, S., & Appleby, A. J. (1998). Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes. Electrochimica Acta, 43(24), 3703-3709. Christian, J. B., Smith, S. P. E., Whittingham, M. S., & Abruna, H. D. (2007). Tungsten based electrocatalyst for fuel cell applications. Electrochemistry Communications, 9(8), 2128-2132. Chu, W., & Windawi, H. (1996).Control VOCs via Catalytic Oxidation . Chem. Eng. Prog., 92(37), 37-43. Chandler, B. D., Schabel, A. B., & Pignolet, L. H. (2000). Preparation and characterization of supported bimetallic Pt-Au and Pt-Cu catalysts from bimetallic molecular precursors. Journal of Catalysis, 193(2), 186-198. Calvillo, L., Lazaro, M. J., Garcia-Bordeje, E., Moliner, R., Cabot, P. L., Esparbe, I., Pastor, E., & Quintana, J. J. (2007). Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. Journal of Power Sources, 169(1), 59-64. Chu, D., & Jiang, R. (1999). Comparative studies of polymer electrolyte membrane fuel cell stack and single cell. Journal of Power Sources, 80, 226–234. Cheng, X., Yi, B., Han, M., Zhang, J., Qiao, Y., & Yu, J. (1999). Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells. Journal of Power Sources, 79(1), 75-81. Carmo, M., Paganin, V. A., Rosolen, J. M., & Gonzalez, E. R. (2005). Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes. Journal of Power Sources, 142(1-2), 169-176. Carmo, M., Linardi, M., & Poco, J. G. R. (2009). Characterization of nitric acid functionalized carbon black and its evaluation as electrocatalyst support for direct methanol fuel cell applications. Applied Catalysis A: General, 355, 132-138. Charreteur, F., Ruggeri, S., Jaouen, F., & Dodelet, J. P. (2008). Increasing the activity of Fe/N/C catalysts in PEM fuel cell cathodes using carbon blacks with a high-disordered carbon content. Electrochimica Acta, 53(23), 6881-6889. Crabb, E. M., Marshall, R., & Thompsett, D. (2000). Carbon Monoxide Electro-oxidation Properties of Carbon-Supported PtSn Catalysts Prepared Using Surface Organometallic Chemistry. J. Electrochem. Soc., 147(12), 4440-4447. Chi-Sheng Wu, J., & Chang, T. (1998). VOC deep oxidation over pt catalysts using hydrophobic supports. Catalysis Today, 44(1-4), 111-118. Denis, M. C., Lefèvre, M., Guay, D., & Dodelet, J. P. (2008). Pt-Ru catalysts prepared by high energy ball-milling for PEMFC and DMFC: Influence of the synthesis conditions. Electrochimica Acta, 53(16), 5142-5154. Escudero, M. J., Hontañón, E., Schwartz, S., Boutonnet, M., & Daza, L. (2002). Development and performance characterisation of new electrocatalysts for PEMFC. Journal of Power Sources, 106(1-2), 206-214. Frey, T., & Linardi, M. (2004). Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance. Electrochimica Acta, 50, 99–105. Garcia, A. C., Paganin, V. A., & Ticianelli, E. A. (2008). CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC. Electrochimica Acta, 53, 4309–4315. Guha, A., Lu, W., Jr, T. A. Z., & Schiraldi, D. A. (2007). Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon, 45, 1506-1517. Gebel, G., Aldebert, P., & Pineri, M. (1987). Structure and related properties of solution-cast perfluorosulfonated ionomer films. Macromolecules, 20(6), 1425–1428. Hara, Y., Minami, N., & Itagaki, H. (2007). Synthesis and characterization of high-surface area tungsten carbides and application to electrocatalytic hydrogen oxidation. Applied Catalysis A: General, 323, 86-93. Ham, D. J., Kim, Y. K., Han, S. H., & Lee, J. S. (2008). Pt/WC as an anode catalyst for PEMFC: Activity and CO tolerance. Catalysis Today, 132, 117–122. Hou, Z., Yi, B., Yu, H., Lin, Z., & Zhang, H. (2003). CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo) made by composite support method. Journal of Power Sources, 123(2), 116-125. Ho Jung, U., Uk Jeong, S., Tae Park, K., Mee Lee, H., Chun, K., Woong Choi, D., et al. (2007). Improvement of water management in air-breathing and air-blowing PEMFC at low temperature using hydrophilic silica nano-particles. International Journal of Hydrogen Energy, 32(17), 4459-4465. Izhar, S., & Nagai, M. (2008). Cobalt molybdenum carbides as anode electrocatalyst for proton exchange membrane fuel cell. Journal of Power Sources, 182(1), 52-60. Iijima. S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58. Jung, C. R., Han, J., Nam, S. W., Lim, T. H., Hong, S. A., & Lee, H. I. (2004). Selective oxidation of CO over CuO-CeO2 catalyst: effect of calcination temperature. Catalysis Today, 93-95, 183-190. Jia, R.-L., Wang, C.-Y., & Wanga, S.-M. (2005). Effect of surface oxygen groups of the supports on platinum dispersion in Pt/C catalys. React.Kinet.Catal.Lett., 86(1), 135-139. Kim, J.-Y., Kwon, O. J., Hwang, S.-M., Kang, M. S., & Kim, J. J. (2006). Development of a miniaturized polymer electrolyte membrane fuel cell with silicon separators. Journal of Power Sources, 161(1), 432-436. Kim, S. C. (2002). The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. Journal of hazardous materials, 91(1-3), 285-299. Küver, A., Vogel, I., & Vielstich, W. (1994). Distinct performance evaluation of a direct methanol SPE fuel cell. A new method using a dynamic hydrogen reference electrode. Journal of Power Sources, 52(1), 77-80 Lindermeir, A., Rosenthal, G., Kunz, U., & Hoffmann, U. (2004). On the question of MEA preparation for DMFCs. Journal of Power Sources, 129(2), 180-187. Lee, S. J., Mukerjee, S., Ticianelli, E. A., & McBreen, J. (1999). Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochimica Acta, 44(19), 3283-3293. Lu, C., & Masel, R. I. (2001). The Effect of Ruthenium on the Binding of CO, H2, and H2O on Pt(110). J. Phys. Chem., 105(40), 9793–9797. Liu, Z., Zhou, R., & Zheng, X. (2007). Comparative study of different methods of preparing CuO-CeO2 catalysts for preferential oxidation of CO in excess hydrogen. Journal of Molecular Catalysis A: Chemical, 267(1-2), 137-142. Liu, G., Zhang, H. M., Wang, M. R., Zhong, H. X., & Chen, J. (2007). Preparation, characterization of ZrOxNy/C and its application in PEMFC as an electrocatalyst for oxygen reduction. Journal of Power Sources, 172,503–510. Li, Q., He, R., Gao, J.-A., Jensen, J. O., & Bjerrum, N. J. (2003). The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C. J. Electrochem. Soc., 150(12), 1599-1605 Mukerjee, S., Srinivasan, S., & Soriaga, M. P. (1995). Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction. J. Electrochem. Soc., 142( 5), 1409-1422. Mohtadi, R., Lee, W. K., & Van Zee, J. W. (2005). The effect of temperature on the adsorption rate of hydrogen sulfide on Pt anodes in a PEMFC. Applied Catalysis B: Environmental, 56(1-2), 37-42. McIntyre, D. R., Burstein, G. T., & Vossen, A. (2002). Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide. Journal of Power Sources, 107(1), 67-73. National Energy Technology Laboratory/ U. S. Department of Energy, (2005), Fuel Cell Handbook, Lightning Source Inc. Oetjen, H.-F., Schmidt, V. M., Stimming, U., & Trila, F. (1996). Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas. J. Electrochem. Soc., 143(12), 3838-3842. Platinum today, http://www.platinum.matthey.com/index.html Papageorgopoulos, D. C., Keijzer, M., & Bruijn, F. A. d. (2002). The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported 3electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochimica Acta, 48, 197-204. Pawelec, B., Mariscal, R., Fierro, J. L. G., Greenwood, A., & Vasudevan, P. T. (2001). Carbon-supported tungsten and nickel catalysts for hydrodesulfurization and hydrogenation reactions. Applied Catalysis A: General, 206(2), 295-307. Pereira, L. G. S., Paganin, V. A., & Ticianelli, E. A. (2009). Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochimica Acta. Pereira, L. G. S., Santos, F. a. R. d., Pereira, M. E., Paganin, V. A., & Ticianelli, E. A. (2006). CO tolerance effects of tungsten-based PEMFC anodes. Electrochimica Acta, 51, 4061–4066. Ren, X., Zelenay, P., Thomas, S., Davey, J., & Gottesfeld, S. (2000). Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources, 86(1-2), 111-116. Rajalakshmi, N., Ryu, H., Shaijumon, M. M., & Ramaprabhu, S. (2005). Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material. Journal of Power Sources, 140(2), 250-257. Salgado, J. R. C., Antolini, E., & Gonzalez, E. R. (2005). Carbon supported Pt70Co30 electrocatalyst prepared by the formic acid method for the oxygen reduction reaction in polymer electrolyte fuel cells. Journal of Power Sources, 141(1), 13-18. Suárez-Alcántara, K., Rodríguez-Castellanos, A., , R. D., & Solorza-Feri, O. (2006). RuxCrySez electrocatalyst for oxygen reduction in a polymer electrolyte membrane fuel cell. Journal of Power Sources, 157(1), 114-120. Shi, W., Yi, B., Hou, M., Jing, F., Yu, H., & Ming, P. (2007). The influence of hydrogen sulfide on proton exchange membrane fuel cell anodes. Journal of Power Sources, 164(1), 272-277 Shi, W., Yi, B., Hou, M., & Shao, Z. (2007). The effect of H2S and CO mixtures on PEMFC performance. International Journal of Hydrogen Energy, 32(17), 4412-4417. Schmidt, T. J., Jusys, Z., Gasteiger, H. A., Behm, R. J., Endruschat, U., & Boennemann, H. (2001). On the CO tolerance of novel colloidal PdAu/carbon electrocatalysts. Journal of Electroanalytical Chemistry, 501(1-2), 132-140. Sun, X., Li, R., Villers, D., Dodelet, J. P., & Desilets, S. (2003). Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings. Chemical Physics Letters, 379(1-2), 99-104. Sawada, S.-i., Yamaki, T., Kawahito, S., Asano, M., Suzuki, A., Terai, T., & Maekawa, Y. (2009). Thermal stability of proton exchange fuel-cell membranes based on crosslinked-polytetrafluoroethylene for membrane-electrode assembly preparation. Polymer Degradation and Stability, 94(3), 344-349. S. J. Gregg, & K. S. W. Sing. (1982). Adsorption, Surface Area and Porosity. Academic Press, London. Samant, P. V., Rangel, C. M., Romero, M. H., Fernandes, J. B., & Figueiredo, J. L. (2005). Carbon supports for methanol oxidation catalyst. Journal of Power Sources, 151, 79-84. Siracusano, S., Stassi, A., Baglio, V., Aric, A. S., Capitanio, F., & Tavares, A. C. (2009). Investigation of carbon-supported Pt and PtCo catalysts for oxygen reduction in direct methanol fuel cells. Electrochimica Acta, 54(21), 4844-4850. Tang, H., Chen, J. H., Huang, Z. P., Wang, D. Z., Ren, Z. F., Nie, L. H., Kuang, Y. F., & Yao, S. Z. (2004). High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon, 42(1), 191-197. Tang, X., Zhang, B., Li, Y., Xu, Y., Xin, Q., & Shen, W. (2004). Carbon monoxide oxidation over CuO/CeO2 catalysts. Catalysis Today, 93-95, 191-198. Taniguchi, A., Akita, T., Yasuda, K., & Miyazaki, Y. (2008). Analysis of degradation in PEMFC caused by cell reversal during air starvation International Journal of Hydrogen Energy, 33, 2323 – 2329. Takako Toda, Hiroshi Igarashi, Hiroyuki Uchida, & Watanabe, M. (1999). Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co. J. Electrochem. Soc., 146( 10), 3750-3756 Urian, R. C., Gulla´, A. F., & Mukerjee, S. (2003). Electrocatalysis of reformate tolerance in proton exchange membranes fuel cells: Part I. Journal of Electroanalytical Chemistry 554-555 307-324. Wilson, M. S., & Gottesfeld, S. (1992). Thin-film catalyst layers for polymer electrolyte fuel cell electrodes Journal of Applied Electrochemistry, 22(1), 1-7. Wilson, M. S., Valerio, J. A., & Gottesfeld, S. (1995). Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochimica Acta, 40(3), 355-363. Wee, J.-H., & Lee, K.-Y. (2006). Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells. Journal of Power Sources, 157(1), 128-135. Xu, H., & Hou, X. (2007). Synergistic effect of CeO2 modified Pt/C electrocatalysts on the performance of PEM fuel cells. International Journal of Hydrogen Energy, 32(17), 4397-4401. Xiong, L., & Manthiram, A. (2005). Effect of Atomic Ordering on the Catalytic Activity of Carbon Supported PtM (M = Fe, Co, Ni, and Cu) Alloys for Oxygen Reduction in PEMFCs. J. Electrochem. Soc., 152(4), A697-A703 Yu, H., Hou, Z., Yi, B., & Lin, Z. (2002). Composite anode for CO tolerance proton exchange membrane fuel cells. Journal of Power Sources, 105(1), 52-57. Yu, P., Pemberton, M., & Plasse, P. (2005). PtCo/C cathode catalyst for improved durability in PEMFCs. Journal of Power Sources, 144(1), 11-20. Zhang, J., Yin, G.-P., Wang, Z.-B., Lai, Q.-Z., & Cai, K.-D. (2007). Effects of hot pressing conditions on the performances of MEAs for direct methanol fuel cells. Journal of Power Sources, 165(1), 73-81. Zeng, J., & Lee, J. Y. (2005). Effects of preparation conditions on performance of carbon-supported nanosize Pt-Co catalysts for methanol electro-oxidation under acidic conditions. Journal of Power Sources, 140(2), 268-273. Zheng, H. T., Li, Y., Chen, S., & Shen, P. K. (2006). Effect of support on the activity of Pd electrocatalyst for ethanol oxidation. Journal of Power Sources, 163(1), 371-375. Sawada, S.-i., Yamaki, T., Kawahito, S., Asano, M., Suzuki, A., Terai, T., et al. (2009). Thermal stability of proton exchange fuel-cell membranes based on crosslinked-polytetrafluoroethylene for membrane-electrode assembly preparation. Polymer Degradation and Stability, 94(3), 344-349. Zhang, J., Xu, H., Ge, Q., & Li, W. (2006). Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect. Catalysis Communications, 7(3), 148-152. Zeng, J., Zhao, Z., Lee, J. Y., Shen, P. K., & Song, S. (2007). Do magnetically modified PtFe/C catalysts perform better in methanol electrooxidation. Electrochimica Acta, 52(11), 3673-3679.
摘要: 近年來由於資源短缺,石油價格不斷地提升,各國無不積極地發展新能源,然而以氫氣作為燃料的燃料電池具低噪音、低污染等優點,而其中質子交換膜燃料電池在各式不同的燃料電池形式中擁有低污染、低溫操作,和高效率密度等優勢,因此近年來備受矚目。 質子交換膜燃料電池在陽極端通常以貴重金屬鉑(Pt)作為電極,主要由於Pt對於氫氣的氧化作用效率相當的高,不過進氣燃料(氫氣為主)可能於重組過程中由於反應的不完全造成一氧化碳的產生,一氧化碳將會佔據電極觸媒表面上的活性位置,導致催化能力降低,文獻中指出近年來,抗毒化能力的雙金屬電極觸媒正被積極地發展。因此,本研究將先探討膜電極組的製備方式,找出較佳的操作條件,再對不同的碳擔體進行改質,比較擔體對觸媒催化活性之影響,最後再選用鎢(W)、鈷(Co)、鐵(Fe)金屬,分別與鉑結合製成雙金屬電極觸媒,探討雙金屬對污染物CO的抵抗能力。將利用FESEM、BET、FTIR、XRD、TEM進行觸媒特性分析。 實驗結果顯示,膜電極組之最佳的熱壓製備條件為溫度135°C、壓力100Kg/cm2,熱壓操作時間180秒。依此最佳製備條件,本研究比較不同觸媒擔體對觸媒活性之影響。由特性分析與活性測試結果可知,以酸處理的奈米碳管(MWCNTs-HNO3)擔體相較於其他擔體擁有較高的活性,推測具均一中孔洞與高含氧官能基的MWCNTs-HNO3擔體,有利於氣體分子擴散進入孔洞內與活性位置的分佈。此外,擔持不同金屬的MWCNTs-HNO3觸媒,在燃料電池裡執行的效能大小分別為:Pt >PtW>PtFe>PtCo。但當系統在含有100ppm的CO環境下,其效能PtW>PtFe>Pt>PtCo。综合上述,經酸處理(HNO3)改質過後的MWCNTs擔持PtW雙金屬觸媒應用於質子交換膜燃料電池中,擁有較高之CO抵抗能力。
In the recent years, the important energy issues are to substitute to the alternative fuels or technologies for traditional petroleum products. Among then, fuel cell which takes hydrogen as fuels has the advantages of low pollution and low noise during power generation processes. Particularly, the polymer electrolyte membrane fuel cell (PEMFC) not only has the near-zero pollutant emission, but also has low-temperature-operation and high-power density compared with other kinds of fuel cells. In the structure of PEMFC, Pt acts as an effective catalyst for hydrogen oxidation. Unfortunately, a rapid degradation of the activity of Pt for hydrogen oxidation is observed when the fuel gas contains CO that inhibits the hydrogen oxidation by occupying the active sites at the normal anode operating potentials. The research are development of CO tolerance electrocatalyst are essential, and most concentrated on PtM (M is usually a transition metals) bimetallic catalysts. It is the aim of this study to investigate the effects of the preparation methods on the membrane-electrode assembly and to determine the best operating parameters. Different carbon supports are modified and the catalytic activity is evaluated subsequently with various catalysts prepared by different supports. The bimetallic catalysts are in the form of an alloy or co-deposit prepared by coating W, Co, Fe with Pt. All catalysts are characterized by means of FESEM, BET, FTIR, XRD, and TEM. The efficiencies of CO-tolerance tests for these bimetallic catalysts compared with pure Pt catalyst are examined. The experimental results show that a comparison of the catalytic activity with different catalyst supports indicates the MWCNTs-HNO3 supported catalyst has higher catalytic activity than others. It is reasoned that MWCNTs-HNO3 supported catalyst has uniform mesoporous-structure and high oxygen groups so that the gas molecules may easily diffuse into the pores to react at active sites. The catalytic activity of MWCNTs-HNO3 supported bimetallic catalysts follows the sequences of Pt >PtW>PtFe>PtCo. With the presence of CO in the fuel gas, the catalytic activity of the bimetallic catalysts are in the following order as PtW>PtFe>Pt>PtCo. In conclusion, the experimental results indicate that PtW-MWCNTs catalyst used in PEMFC shows a good electrocatalytic activity for hydrogen oxidation and high ability for CO tolerances.
URI: http://hdl.handle.net/11455/5708
其他識別: U0005-2506200918450500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2506200918450500
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.