請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5718
標題: 流式質體儀:超快速高輸出質體學研究量化儀器開發-流體動態聚焦與細胞溶解
Flow Omics: Ultrafast and high throughput microbial identification device development-Hydrodynamic focusing and cell lysis
作者: 楊倧儒
Yang, Tsung-Ju
關鍵字: Flow Omics
出版社: 環境工程學系所
引用: 1. Abolmaaty A., El-Shemy M. G.,Khallaf M. F. and Levin R. E., Meth J.Microbiol., 1998, 34, 133-141. 2. Allbritton NL, Sims CE, Berns MW, Meredith GD, Krasieva TB, Tromberg BJ (2000) Fast controllable laser lysis of cells for analysis. United States Patent 6,156,576 3. Arai, F.; Ichikawa, A.; Ogawa, M.; Fukuda, T.; Horio, K.; Itoigawa, K., High-speed separation system of randomly suspended single living cells by laser trap and dielectrophoresis. Electrophoresis 2001, 22, (2), 283-288. 4. Belgrader P, Hansford D, Kovacs GT, Venkateswaran K, Mariella R Jr, Milanovich F, Nasarabadi S, Okuzumi M, Pourahmadi F, Northrup MA (1999) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Anal Chem 71(19):4232-4236 5. Britz-McKibbin P.; Markuszewski M. J.; Iyanagi T.; Matsuda K.; Nishioka T.; Terabe S. Anal. Biochem. 2003, 313, 89-96. 6. Buch J. S.; Wang P.-C.; DeVoe D. L.; Lee C. S. Electrophoresis 2001, 22,3902-3907. 7. Buer CS, Gahagan KT, Swartzlander GA Jr, Weathers PJ (1998) Insertion of microscopic objects through plant cell walls using laser microsurgery. Biotechnol Bioeng 60(3):348-355 8. Carlo D. Di ,Jeong K. H. and Lee L. P., Lab Chip, 2003, 3, 4,287-291. 9. Chang D. C., Chassy B. M. , Saunders J. A. and Sowers A. E. ,Guide to Electroporation and Electrofusion, Academic Press, Inc.,San Diego, CA, 1992 10. Chang, S. C.; Adriaens, P. Flow Genomics. Invention disclosure (No. 2800) filed at the University of Michigan, Ann Arbor, Michigan. 2004. 11. Chang, S. C.; Adriaens, P., Nano-Immunodetection and Quantification of Mycobacteria in Metalworking Fluids. Environmental Engineering Science 2007, 24, (1), 58-72. 12. Chang, S. C.; Rihana, A.; Bahrman, S.; Gruden, C. L.; Khijniak, A. I.; Skerlos, S. J.; Adriaens, P., Flow cytometric detection and quantification of mycobacteria in metalworking fluids. International Biodeterioration & Biodegradation 2004, 54, (2-3), 105-112. 13. Clark M, Bindon C, Dyer M, Friend P, Hale G, Cobbold S,Calne R, Waldmann H (1989) The improved lytic function and in vivo efficacy of monovalent monoclonal CD3 antibodies.Eur J Immunol 19:381-388 14. De Boer AH, Van Duijn B, Giesberg P, Wegner L, Obermeyer G, Koehler K, Linz KW (1994) Laser microsurgery: a versatile tool in plant (electro) physiology. Protoplasma 178(1/2):1-10 15. Diehl, F.; Li, M.; He, Y. P.; Kinzler, K. W.; Vogelstein, B.; Dressman, D., BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nature Methods 2006, 3, (7), 551-559. 16. Dolman D, Newell G, Thurlow M, Dunford HA (1975) Kinetic study of the reaction of horseradish peroxidase with hydrogen peroxide. Can J Biochem 53:495 17. Dou, Y. H.; Bao, N.; Xu, J. J.; Chen, H. Y. Electrophoresis 2002, 23, 3558-3566. 18. Dressman, D.; Yan, H.; Traverso, G.; Kinzler, K. W.; Vogelstein, B., Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. PNAS 2003, 100, (15), 8817-8822. 19. Effenhauser, C. S. In Microsystem Technology in Chemistry and Life Science;Manz, A., Becker, H.,Eds.;Springer: Berlin, 1999; pp 51-82. 20. Emrich, C. A.; Tian, H.; Medintz, I. L.; Mathies, R. A. Anal. Chem. 2002,74, 5076-5083. 21. Erickson, D.; Li, D., Integrated microfluidic devices. Analytica Chimica Acta 2004, 507, (1), 11-26. 22. Ertl, P.; Emrich, C. A.; Singhal, P.; Mathies, R. A. Anal. Chem. 2004, 76,in press. 23. Fisher, M. M.; Triplett, E. W., Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Applied and Environmental Microbiology 1999, 65, 4630-4636. 24. Fujima, J. M.; Danielson, N. D, Anal. Chim. Acta 1998, 375, 233-241. 25. Gao, J.; Yin, X. F.; Fang, Z. L., Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab on a Chip 2004, 4, (1), 47-52. 26. Gu, W.; Zhu, X. Y.; Futai, N.; Cho, B. S.; Takayama, S., Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (45), 15861-15866. 27. Haeberle, S.; Zengerle, R.; Ducree, J., Centrifugal generation and manipulation of droplet emulsions. Microfluid Nanofluid 2006, 6, 776-781. 28. Harrison, D. J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C. S.; Manz, A.Science 1993, 261, 895-897. 29. Hashimoto, M. H.; Tsukagoshi, K.; Nakajima, R.; Kondo, K.; Arai, A. J.Chromatogr., A 2000, 867, 271-279. 30. Henriksen GH, Assmann SM (1997) Laser-assisted patch clamping:a methodology. Pfluegers Archiv Eur J Physiol 433(6):832-841 31. Hicks, J. M.; Young, D. S. Directory of Rare Analyses; AACC Press:Washington, 1997. 32. Hoffmann F (1996) Laser microbeams for the manipulation of plant cells and subcellular structures. Plant Sci (Shannon) 113(1):1-11 33. Hong, J. W.; Studer, V.; Hang, G.; Anderson, W. F.; Quake, S. R., A nanoliter-scale nucleic acid processor with parallel architecture. Nature Biotechnology 2004, 22, (4), 435-439. 34. Hsiung, S. K.; Chen, C. T.; Lee, G. B., Micro-droplet formation utilizing microfluidic flow focusing and controllable moving-wall chopping techniques. Journal of Micromechanics and Microengineering 2006, 16, (11), 2403-2410. 35. Huang Y.,Mather E. L.,Bell J. L. and Madou M., Anal. Bioanal.Chem., 2002, 372, 49-65 ‧ This paper reviews the many complicated issues involved in sample preparation on chip and in particular cell lysis. 36. Huang, S. H.; Tan, W. H.; Tseng, F. G.; Takeuchi, S., A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems. Journal of Micromechanics and Microengineering 2006, 16, (11), 2336-2344. 37. Jeong, W. J.; Kim, J. Y.; Choo, J.; Lee, E. K.; Han, C. S.; Beebe, D. J.; Seong, G. H.; Lee, S. H., Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems. Langmuir 2005, 21, (9), 3738-3741. 38. Jin, L. J.; Giordano, B. C.; Landers, J. P. Anal. Chem. 2001, 73, 5507-5512. 39. Joanicot, M.; Ajdari, A., APPLIED PHYSICS: Droplet Control for Microfluidics. Science 2005, 309, (5736), 887-888. 40. Karam JD, Drake JW, Kreuzer KN, Mosig G, Hall D, Eiserling FA, Black LW, Kutter E, Carlson K, Miller ES, Spicer E (1994)(eds) Lysis and the interaction between free phages and infected cells. The molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 397-405 41. Kepner, J. R. L.; Pratt, J. R., Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiology Review 1994, 58, 603-615. 42. Khan, I. U. H.; Yadav, J. S., Development of a single-tube, cell lysis-based, genus-specific PCR method for rapid identification of mycobacteria: optimization of cell lysis, pcr primers and conditions, and restriction pattern analysis. J. Clin. Microbiol. 2004, 42, 453-457. 43. Kitagawa S, Kawaura C, Hashimoto O, Takahashi T, Naoi M,Tsuda T (1995) Manipulation of a single cell with microcapill arytubing based on its electrophoretic mobility. Electrophoresis1364-1368 44. Kruger, J.; Singh, K.; O''Neill, A.; Jackson, C.; Morrison, A.; O''Brien, P., Development of a microfluidic device for fluorescence activated cell sorting. Journal of Micromechanics and Microengineering 2002, 12, (4), 486-494. 45. Kurkdjian A, Leitz G, Manigault P, Harim A, Greulich KO (1993) Non-enzymatic access to the plasma membrane of Medicago root hairs by laser microsurgery. J Cell Sci 105(1):263-268 46. Lee SW, Yowanto H, Tai YC (Jan 1998) A micro cell lysis device.The 11th Annual International Workshop on Micro Electro Mechanical Systems (MEMS ‘98) 47. Li, M.; Diehl, F.; Dressman, D.; Vogelstein, B.; Kinzler, K. W., BEAMing up for detection and quantification of rare sequence variants. Nature Methods 2006, 3, 95-97. 48. Liu, B.-F.; Ozaki, M.; Hisamoto, H.; Ustumi, Y.; Hattori, T.; Terabe, S. Lab Chip 2004, 4, 368-371. 49. Lu H. , GaudetS. ,Schmidt M. A. and Jensen K. F. , Anal. Chem.,2004, 76, 5705-5712. 50. Lynch P. T. and Davey M. R., Electrical Manipulation of Cells,Chapman & Hall, New York, 1996. 51. Makamba, H.; Kim, J. H.; Lim, K.; Park, N.; Hahn, J. H.Electrophoresis 2003,24, 3607-3619. 52. Mangru, S. D.; Harrison, D. J. Electrophoresis 1998, 68, 2301-2307. 53. Manz, A.; Graber, N.; Widmer, H. M. Sens. Actuators, B 1990, 1, 244-249. 54. Mekaru, H.; Utsumi, Y.; Hattori, T. Nucl. Instrum. Methods Phys. Res., A2001, 467-468, 741-744. 55. Melanson, J. E.; Baryla, N. E.; Lucy, C. A. TrAC, Trends Anal. Chem. 2001,20, 365-374. 56. Milanovic D.,Doherty L.Teasdale, D. A.,Parsa S. and PisterK. S. J., IEEE Transactions on Electron Devices, 2001, 48, 166-173 ‧‧ This paper presents controllable methods to create nanoscale silicon barbs. 57. Miller DL, Spooner GJ, Williams AR (2001) Photodisruptive laser nucleation of ultrasonic cavitation for biomedical applications.J Biomed Opt 6(3):351-358 58. Min JH, Baeumner AJ (2002) Highly sensitive and specific detection of viable Escherichia coli in drinking water. Anal Biochem 303:186-193 59. Neumann E., A. E. Sowers A. E. and Jordan C. A. , Electroporation and Electrofusion in Cell Biology, Plenum Press, New York, 1989. 60. Nisisako, T.; Okushima, S.; Torii, T., Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 2005, 1, (1), 23-27. 61. Porter, J.; Deere, D.; Hardman, M.; Edwards, C.; Pickup, R., Go with the flow - use of flow cytometry in environmental microbiology. Fems Microbiology Ecology 1997, 24, (2), 93-101. 62. Qiu, H.; Yan, J.; Sun, X.; Liu, J.; Cao, W.; Yang, X.; Wang, E. Anal. Chem.2003, 75, 5435-5440. 63. Ranjard, L.; Poly, F.; Nazaret, S., Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Research in Microbiology 2000, 151, 167-177. 64. Saraiva JA, Oliveira JC, Lemos MA (1995) The nature of the kinetic behaviour of horseradish peroxidase thermal inactivation in solution. IUFoST 9th World Congress of Food Science and Technology, Budapest, Hungary, Jul 30-Aug 4 65. Schilling E. A. , Kamholz A. E. and Yager P. , Chem Anal. ., 2002, 74,1798-1804 ‧ This paper highlights the possibility of protein assays after on chip lysis using a non-denaturing surfactant. Previously only nucleic acid assays were being performed. 66. Schilling, E. A.; Kamholz, A. E.; Yager, P., Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Analytical Chemistry 2002, 74, (8), 1798-1804. 67. Sims CE, Meredith GD, Krasieva TB, Berns MW, TrombergBJ, Allbritton NL (1998) Laser-micropipet combination for single-cell analysis. Anal Chem 70(21):4570-4577 68. Stoscheck C. M. , Enzymol Meth. ., 1990, 182, 50-68. 69. Su, R.; Lin, J.-M.; Qu, F.; Chen, Z.; Gao, Y.; Yamada, M. Anal. Chim. Acta2004, 508, 11-15. 70. Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A., Monodisperse Double Emulsions Generated from a Microcapillary Device. Science 2005, 308, (5721), 537-541. 71. Wagner, M.; Nielsen, P. H.; Loy, A.; Nielsen, J. L.; Daims, H., Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Current Opinion in Biotechnology 2006, 17, (1), 83-91. 72. Ward M, Wu J, Chiu J-F (1999) Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents. J Acoust Soc Am 105:2951-2957 73. Wheeler, A. R.; Throndset, W. R.; Whelan, R. J.; Leach, A. M.; Zare, R. N.; Liao, Y. H.; Farrell, K.; Manger, I. D.; Daridon, A., Microfluidic device for single-cell analysis. Analytical Chemistry 2003, 75, (14), 3581-3586. 74. Whitesides, G. M., The origins and the future of microfluidics. Nature 2006, 442, (7101), 368-373. 75. Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X. Y.; Ingber, D. E., Soft lithography in biology and biochemistry. Annual Review of Biomedical Engineering 2001, 3, 335-373. 76. Wu, H. K.; Wheeler, A.; Zare, R. N., Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (35), 12809-12813. 77. Yeung ES (1999) Chemical characterization of single cells and single molecules. J Chin Chem Soc 46:351 78. Yasushi Toma, Seigo Kanemaru, and Junji Itoh, Electron-beam characteristics of double-gated Si field emitter arrays, J. Vac. Sci. Technol. B 14(3), p.1902, 1996.
摘要: 由於在環境工程與環境微生物領域中始終有個未能解決的問題。當面對一個未知環境樣品時,利用傳統之生物檢測方式並無法同時檢測出樣品中包含「何種物種」?「各物種數目」?與「物種在環境中所扮演的角色與其功能」? 傳統的劃碟法不僅耗時且靈敏度低。及近來之分子生物定量方法仍無法快速地鑑定及定量各種微生物及其功能性角色。為解決上述研究難題,將藉由基因體去氧核醣核酸中之重複片段為標的,並結合微流體生物晶片、微水珠的形成、單一細胞封裝、細胞快速溶解、單分子光學訊號快速擷取,以快速的鑑定與定量微生物,一舉達成解決環境工程與環境微生物研究領域中所無法解決的難題。 本研究以微機電系統之微影製程及軟微影製程完成微流體生物晶片與微小電極之微流體生物晶片之開發,而本研究得到在微流道內油相流體動態聚焦現象與細胞快速溶解之結果,這些結果顯示了如何有效控制微流道中流體狀況控制分析與微流道中進行快速細胞溶解之可行性,同時也奠定了往後進行流式質體儀超快速高輸出質體學量化儀器開發的穩固基礎。
There is an unsolved research problem in environmental microbiology and microbial ecology, i.e., no method is available to identify, quantify, and define the functional roles of each microbial cell at the same time. Tradition culturing method is not only time consuming but insensitive. Even with newly developed molecular biological technologies, there is still no way to rapidly identify and quantify all microorganisms in an environmental sample. To solve this problem, an new approach is proposed through the integration of targeting the genomic DNA repeats, microfluidic biochips, microdroplet formation in microchannels, single cell packaging, rapid cell lysis, single molecule detection. The finished platform will be able to meet the aforementioned research needs. This study has finished a prototype using the microfabrication technology in traditional micro-electro-mechanical-system (MEMS) field, soft lithography, and microelectrode fabrication. Through this prototype, successful hydrodynamic focusing and rapid cell lysis have been achieved. The results suggest that it is feasible to lyse microbial cells in microfluidic biochips. This research also laid solid foundation for the ultimate goal of fabricating a prototype of Flow Omics - a rapid and high through-put platform for omic-type studies.
URI: http://hdl.handle.net/11455/5718
其他識別: U0005-2907200914005400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2907200914005400


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。