請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5719
標題: 觸媒應用於廢棄物焚化污染物處理之研究
Application of the catalyst for the treatment of waste incineration pollutants
作者: 張鳳儀
Chang, Feng-Yim
關鍵字: Incineration
焚化
Catalyst
NO
PAHs
Poison
Modification
觸媒
一氧化氮
多環芳香烴化合物
毒化
改質
出版社: 環境工程學系所
引用: Abdulhamid, H. Fridell, E. Dawody, J. Skoglundh, M., In situ FTIR study of SO2 interaction with Pt/BaCO3/Al2O3 NOx storage catalysts under lean and rich conditions, J. Catal. 241 (2006) 200-210. Amiridis, M. D. Wachs, I. E. Deo, G. Jehng, J. -M. Kim, D. S., Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3: Influence of vanadia loading, H2O, and SO2, J. Catal. 161 (1996) 247-253. Angelidis, T. N. Christoforou, S. Bongiovanni, A. Kruse, N., On the promotion by SO2 of the SCR process over Ag/Al2O3: influence of SO2 concentration with C3H6 versus C3H8 as reductant, Appl. Catal. B 39 (2002) 197-204. Araya, P. Gracia, F. Cortés, J. Wolf, E. E., FTIR study of the reduction reaction of NO by CO over Rh/SiO2 catalysts with different crystallite size, Appl. Catal. B 38 (2002) 77-90. Atkins, M. Couves, J. Hague, M. Sakakini, B. H. Waugh, K. C., On the role of Cs, Cl and subsurface O in promoting selectivity in Ag/α-Al2O3 catalysed oxidation of ethene to ethene epoxide, J. Catal. 235 (2005) 103-113. Avalos, L. A. Bustos, V. Uñac, R. Zaera, F. Zgrablich, G., Toward a realistic model for the kinetics of the NO + CO reaction on rhodium surfaces, J. Mol. Catal. A 228 (2005) 89-95. Bánsági, T. Zakar, T. S. Solymosi, F., An FTIR study on the formation of NCO surface complexes over Rh/CeO2, Appl. Catal. B 66 (2006) 147-150. Barrera, A. Viniegra, M. Fuentes, S. Díaz, G., The role of lanthana loading on the catalytic properties of Pd/Al2O3-La2O3 in the NO reduction with H2, Appl. Catal. B 56 (2005) 279-288. Bartholomew, C. H., Mechanisms of catalyst deactivation, Appl. Catal. A 212 (2001) 17-60. Brandhorst, M. Zajac, J. Jones, D. J. Rozière, J. Womes, M. Jimenez-López, A. Rodríguez-Castellón, E., Cobalt-, copper- and iron-containing monolithic aluminosilicate-supported preparations for selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal. B 55 (2005) 267-276. Burch, R. Ramli, A., A comparative investigation of the reduction of NO by CH4 on Pt, Pd, and Rh catalysts, Appl. Catal. B 15 (1998) 49-62. Burch, R. Watling, T. C., The effect of sulphur on the reduction of NO by C3H6 and C3H8 over Pt/Al2O3 under lean-burn conditions, Appl. Catal. B 17 (1998) 131-39. Burch, R. Urbano, F. J. Loader, P. K., Methane combustion over palladium catalysts: The effect of carbon dioxide and water on activity, Appl. Catal. A 123 (1995) 173-184. Centi, G., Supported palladium catalysts in environmental catalytic technologies for gaseous emissions, J. Mol. Catal. A 173 (2001) 287-312. Chafik, T. Kondarides, D. I. Verykios, X. E., Catalytic reduction of NO by CO over rhodium catalysts: 1. adsorption and displacement characteristics investigated by In Situ FTIR and Transient-MS techniques, J. Catal. 190 (2000) 446-459. Chang, F. Y. Wey, M. Y., Comparison of the characteristics of bottom and fly ashes generated from various incineration processes, J. Hazard. Mater. 138 (2006) 594-603. Chang, F. Y. Chen, J. C. Wey, M. Y., Catalytic removal of NO in waste incineration processes over Rh/Al2O3 and Rh-Na/Al2O3: Effects of particulates, heavy metals, SO2 and HCl, Fuel Process. Technol. 90 (2009a) 576-582. Chang, F. Y. Chen, J. C. Wey, M. Y., Effects of oxygen and hydrogen chloride on NO removal efficiency by Rh/Al2O3 and Rh-Na/Al2O3 catalysts, Appl. Catal. A 359 (2009b) 88-95. Chang, F. Y. Wey, M. Y. Chen, J. C., Effects of sodium modification, different reductants and SO2 on NO reduction by Rh/Al2O3 catalysts at excess O2 conditions, J. Hazard. Mater. 156 (2008) 348-355. Charles, A. Potocki, B. B. Joseph, S., Exposure to carcinogenic PAHs in the environment, Environ. Sci. Technol. 26 (1992) 1278-1284. Chen, H. Y. Sachtler, W. M. H., Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor, Catal. Today 42 (1998) 73-83. Chen, J. C. Wey, M. Y. Yeh, C. L. Liang, Y. S., Simultaneous treatment of organic compounds, CO, and NOx in the incineration flue gas by three-way catalyst, Appl. Catal. B 48 (2004) 25-35. Chen, J. P. Yang, R. T., Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3, J. Catal. 125 (1990) 411-420. Choo, S. T. Lee, Y. G. Nam, I. -S. Ham, S. W. Lee, J. B., Characteristics of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3, Appl. Catal. A 200 (2000) 177-188. Choung, J. W. Nam, I. -S., Characteristics of copper ion exchanged mordenite catalyst deactivated by HCl for the reduction of NOx with NH3, Appl. Catal. B 64 (2006a) 42-50. Choung, J. W. Nam, I. -S., Role of cerium in promoting the stability of CuHM catalyst against HCl to reduce NO with NH3, Appl. Catal. A 312 (2006b) 165-174. Córdoba, L. F. Sachtler, W. M. H. Correa, C. M. d., NO reduction by CH4 over Pd/Co-sulfated zirconia catalysts, Appl. Catal. B 56 (2005) 269-277. Critchley, C. Baianu, I. Govindjee, C. Gutowsky, H. S., The role of chloride in O2 evolution by thylakoids from salt-tolerant higher plants, Biochim. Biophys. Acta 682 (1982) 436-445. Djerad, S. Crocoll, M. Kureti, S. Tifouti, L. Weisweiler, W., Effect of oxygen concentration on the NOx reduction with ammonia over V2O5-WO3/TiO2 catalyst, Catal. Today 113 (2006) 208-214. Efthimiadis, E. A. Christoforou, S. C. Nikolopoulos, A. A. Vasalos, I. A., Selective catalytic reduction of NO with C3H6 over Rh/alumina in the presence and absence of SO2 in the feed, Appl. Catal. B 22 (1999) 91-106. Efthimiadis, E. A. Lionta, G. D. Christoforou, S. C. Vasalos, I. A., The effect of CH4, H2O and SO2 on the NO reduction with C3H6, Catal. Today 40 (1998) 15-26. Everaert, K. Baeyens, J., Catalytic combustion of volatile organic compounds, J. Hazard. Mater. 109 (2004) 113-139. ESAC database, http://www.lasurface.com/accueil/index.php. Fernández-García, M. Martínez-Arias, A. Belver, C. Anderson, J. A. Conesa, J. C. Soria, J., Behavior of palladium-copper catalysts for CO and NO elimination, J. Catal. 190 (2000) 387-395. Figueras, F. Flores, J. L. Delahay, G. Giroir-Fendler, A. Bourane, A. Clacens, J. -M. Desmartin-Chomel, A. Lehaut-Burnouf, C., Bifunctional mechanism for the selective catalytic reduction of NOx on Rh/sulfated titania, J. Catal. 232 (2005) 27-33. Flores-Moreno, J. L. Delahay, G. Figueras, F. Coq, B., DRIFTS study of the nature and reactivity of the surface compounds formed by co-adsorption of NO, O2 and propene on sulfated titania-supported rhodium catalysts, J. Catal. 236 (2005) 292-303. Forzatti, P. Lietti, L., Catalyst deactivation, Catal. Today 52 (1999) 165-181. Fritz, A. Pitchon, V., The current state of research on automotive lean NOx catalysis, Appl. Catal. B 13 (1997) 1-25. Gaspar, A. B. Dieguez, L. C., Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts, Appl. Catal. A 201 (2000) 241-251. Gonçalves, F. Figueiredo, J. L., Development of carbon supported metal catalysts for the simultaneous reduction of NO and N2O, Appl. Catal. B 50 (2004) 271-278. Goo, J. H. Irfan, M. F. Kim, S. D. Hong, S. C., Effects of NO2 and SO2 on selective catalytic reduction of nitrogen oxides by ammonia, Chemosphere 67 (2007) 718-723. Gracia, F. J. Miller, J. T. Kropf, A. J. Wolf, E. E., Kinetics, FTIR, and controlled atmosphere EXAFS study of the effect of chlorine on Pt-supported catalysts during qxidation reactions, J. Catal. 209 (2002) 341-354. Granados, M. L. Larese, C. Galisteo, F. C. Mariscal, R. Fierro, J.L.G. R. Ruíz, F. Sanguino, R. Luna, M., Effect of mileage on the deactivation of vehicle-aged three-way catalysts, Catal. Today 107-108 (2005) 77-85. Halkides, T. I. Kondarides, D. I. Verykios, X. E., Catalytic reduction of NO by C3H6 over Rh/TiO2 catalysts: Effect of W6+-cation doping of TiO2 on morphological characteristics and catalytic performance, Appl. Catal. B 41 (2003) 415-426. Halkides, T. I. Kondarides, D. I. Verykios, X. E., Mechanistic study of the reduction of NO by C3H6 in the presence of oxygen over Rh/TiO2 catalysts, Catal. Today 73 (2002) 213-221. Hamada, H. Kintaichi, Y. Sasaki, M. Ito, I., Transition metal-promoted silica and alumina catalysts for the selective reduction of nitrogen monoxide with propane, Appl. Catal. 75 (1991) L1-L8. Haneda, M. Kintaichi, Y. Hamada, H., Activity enhancement of SnO2-doped Ga2O3-Al2O3 catalysts by coexisting H2O for the selective reduction of NO with propene, Appl. Catal. B 20 (1999) 289-300. Haneda, M. Kintaichi, Y. Bion, N. Hamada, H., Mechanistic study of the effect of coexisting H2O on the selective reduction of NO with propene over sol-gel prepared In2O3-Al2O3 catalyst, Appl. Catal. B 42 (2003) 57-68. Hasegawa, Y. Haneda, M. Kintaichi, Y. Hamada, H., Zn-promoted Rh/SiO2 catalyst for the selective reduction of NO with H2 in the presence of O2 and SO2, Appl. Catal. B 60 (2005) 41-47. He, C. Paulus, M. Chu, W. Find, J. Nickl, J. A. Köhler, K., Selective catalytic reduction of NO by C3H8 over CoOx/Al2O3: An investigation of structure-activity relationships, Catal. Today 131 (2008) 305-313. Hirano, T. Ozawa, Y. Sekido, T. Ogino, T. Miyao, T. Naito, S., Marked effect of In, Pb and Ce addition upon the reduction of NO by CO over SiO2 supported Pd catalysts, Catal. Commun.8 (2007a) 1249-1254. Hirano, T. Ozawa, Y. Sekido, T. Ogino, T. Miyao, T. Naito, S., The role of additives in the catalytic reduction of NO by CO over Pd-In/SiO2 and Pd-Pb/SiO2 catalysts, Appl. Catal. A 320 (2007b) 91-97. Honda, F. Hirokawa, K., X-ray photoelectron spectroscopic observation of nitrogen-containing gases adsorbed at high pressures on some transition metals, J. Elec. Spect. Rel. Phen. 10 (1977) 125-136. Huang, Z. Zhu, Z. Liu, Z., Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures, Appl. Catal. B 39 (2002) 361-368. Huang, Z. Liu, Z. Zhang, X. Liu, Q., Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature, Appl. Catal. B 63 (2006) 260-265. Ide, Y. Kashiwabara, K. Okada, S. Mori, T. Hara, M., Catalytic decomposition of dioxin from MSW incinerator flue gas, Chemosphere 32 (1996) 189-198. Jones, J. Ross, J. R. H., The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases, Catal. Today 35 (1997) 97-105. Kang, M. Park, E. D. Kim, J. M. Yie, J. E., Cu-Mn mixed oxides for low temperature NO reduction with NH3, Catal. Today 111 (2006) 236-241. Kašpar, J. de. Leitenburg, C. Fornasiero, P. Trovarelli, A. Graziani M., NO reduction by CO over Rh/Al2O3. Effects of rhodium dispersion on the catalytic properties, J. Catal. 146 (1994) 136-143. Kijlstra, W. S. Biervliet, M. Poels, E. K. Bliek, A., Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures, Appl. Catal. B 16 (1998) 327-337. Kijlstra, W. S. Daamen, J. C.M.L. van de Graaf, J. M. van der Linden, B. Poels, E. K. Bliek, A., Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3, Appl. Catal. B 7 (1996) 337-357. Kikuchi, E. Ogura, M. Aratani, N. Sugiura, Y. Hiromoto, S. Yogo, K., Promotive effect of additives to In/H-ZSM-5 catalyst for selective reduction of nitric oxide with methane in the presence of water vapor, Catal. Today 27 (1996) 35-40. Kilgroe, J. D., Control of dioxin, furan and mercury emissions from municipal waste combustors, J. Hazard. Mater. 47 (1996) 163-194. Kondarides, D. I. Chafik, T. Verykios, X. E., Catalytic reduction of NO by CO over rhodium catalysts: 3. The role of surface isocyanate species, J. Catal. 193 (2000) 303-307. Kotsifa, A. Kondarides, D. I. Verykios, X. E., A comparative study of the selective catalytic reduction of NO by propylene over supported Pt and Rh catalysts, Appl. Catal. B 80 (2008) 260-270. Kuo, J. H. Tseng, H. H. Rao, P. S. Wey, M. Y., The prospect and development of incinerators for municipal solid waste treatment and characteristics of their pollutants in Taiwan, Appl. Thermal Eng. 28 (2008) 2305-2314. Lambrou, P. S. Efstathiou, A. M., The effects of Fe on the oxygen storage and release properties of model Pd-Rh/CeO2-Al2O3 three-way catalyst, J. Catal. 240 (2006) 182-193. Larese, C. Galisteo, F. C. Granados, M. Mariscal, L. R. Fierro, J.L.G. Furió, M. Ruiz, R. F., Deactivation of real three way catalysts by CePO4 formation, Appl. Catal. B 40 (2003) 305-317. Larese, C. Granados, M. L. Galisteo, F. C. Mariscal, R. Fierro, J.L.G., TWC deactivation by lead: A study of the Rh/CeO2 system, Appl. Catal. B 62 (2006) 132-143. Lau, N. T. Fang, M. Chan, C. K., The effect of H2O on the reduction of SO2 and NO by CO on La2O2S, Appl. Catal. B 79 (2007) 110-116. Lietti, L. Alemany, J. L. Forzatti, P. Busca, G. Ramis, G. Giamello, E. Bregani, F., Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia, Catal. Today 29 (1996) 143-148. Liljelind, P. Unsworth, J. Maaskant, O. Marklund, S., Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction, Chemosphere 42 (2001) 615-23. Lisi, L. Lasorella, G. Malloggi, S. Russo, G., Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts, Appl. Catal. B 50 (2004) 251-258. Liu, L. Guan, X. Li, Z. Zi, X. Dai, H. He, H., Supported bimetallic AuRh/γ-Al2O3 nanocatalyst for the selective catalytic reduction of NO by propylene, Appl. Catal. B 90 (2009) 1-9. Liu, Z. S. Wey, M. Y. Lin, C. L., Simultaneous control of acid gases and PAHs using a spray dryer combined with a fabric filter using different additives, J. Hazard. Mater. B91 (2002) 129-141. Loffreda, D. Simon, D. Sautet, P., Structure sensitivity for NO dissociation on palladium and rhodium surfaces, J. Catal. 213 (2003) 211-225. Lu, C. Y. Tseng, H. H. Wey, M. Y. Liu, L. Y. Kuo, J. H. Chuang, K. H., Al2O3-supported Cu-Co bimetallic catalysts prepared with polyol process for removal of BTEX and PAH in the incineration flue gas, Fuel 88 (2009) 340-347. Lu, C. Y. Wey, M. Y., Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas, Fuel Process. Technol. 88 (2007) 557-567. Luo, C. Li, J. Zhu, Y. Hao, J., The mechanism of SO2 effect on NO reduction with propene over In2O3/Al2O3 catalyst, Catal. Today 119 (2007) 48-51. Ma, J. Liu, Z. Liu, Q. Guo, S. Huang, Z. Xiao, Y, SO2 and NO removal from flue gas over V2O5/AC at lower temperatures - role of V2O5 on SO2 removal, Fuel Process. Technol. 89 (2008) 242-248. Macleod, N. Lambert, R. M., Lean NOx reduction with CO + H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts, Appl. Catal. B 35 (2002a) 269-279. Macleod, N. Lambert, R. M., Low-temperature NOx reduction with H2+CO under oxygen-rich conditions over a Pd/TiO2/Al2O3 catalyst, Catal. Commun. 3 (2002b) 61-65. Macleod, N. Isaac, J. Lambert, R. M., A comparison of sodium-modified Rh/γ-Al2O3 and Pd/γ-Al2O3 catalysts operated under simulated TWC conditions, Appl. Catal. B 33 (2001a) 335-343. Macleod, N. Isaac, J. Lambert, R. M., Sodium promotion of the NO + C3H6 reaction over Rh/γ-Al2O3 catalysts, J. Catal. 193 (2000) 115-122. Macleod, N. Isaac, J. Lambert, R. M., Sodium promotion of Pd/γ-Al2O3 catalysts operated under simulated “Three-Way” conditions, J. Catal. 198 (2001b) 128-135. Maillet, T. Jr, J. B. Duprez, D., Reactivity of steam in exhaust gas catalysis III. Steam and oxygen/steam conversions of propane on a Pd/Al2O3 catalyst, Appl. Catal. B 9 (1996) 251-266. Marnellos, G. E. Efthimiadis, E. A. Vasalos, I. A., Mechanistic and kinetic analysis of the NOX selective catalytic reduction by hydrocarbons in excess O2 over In/Al2O3 in the presence of SO2 and H2O, Appl. Catal. B 48 (2004) 1-15. Martín, J. A. Yates, M. Ávila, P. Suárez, S. Blanco, J., Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts, Appl. Catal. B 70 (2007) 330-334. McInroy, A. R. Lundie, D. T. Winfield, J. M. Dudman, C. C. Jones, P. Parker, S. F. Lennon, D., The interaction of alumina with HCl: An infrared spectroscopy, temperature-programmed desorption and inelastic neutron scattering study, Catal. Today 114 (2006) 403-411. Mello, L. F. de, Noronha, F. B. Schmal, M., NO reduction with ethanol on Pd-Mo/Al2O3 catalysts, J. Catal. 220 (2003) 358-371. Mendioroz, S. Martín-Rojo, A. B. Rivera, F. J. Martín, C. Bahamonde, A. Yates, M., Selective catalytic reduction of NOx by methane in excess oxygen over Rh based aluminium pillared clays, Appl. Catal. B 64 (2006) 161-170. Mitome, J. Aceves, E. Ozkan, U. S., Role of lanthanide elements on the catalytic behavior of supported Pd catalysts in the reduction of NO with methane, Catal. Today 53 (1999) 597-606. Mokhnachuk, O. V. Soloviev, S. O. Kapran, A. Y., Effect of rare-earth element oxides (La2O3, Ce2O3) on the structural and physico-chemical characteristics of Pd/Al2O3 monolithic catalysts of nitrogen oxide reduction by methane, Catal. Today 119 (2007) 145-151. Mosqueda-Jiménez, B. I. Jentys, A. Seshan, K. Lercher, J. A. Reduction of nitric oxide by propene and propane on Ni-exchanged mordenite, Appl. Catal. B 43 (2003) 105-115. Moulijn, J. A. Diepen, A. E. van. Kapteijn, F., Catalyst deactivation: is it predictable?: What to do? Appl. Catal. A 212 (2001) 3-16. Mulla, S. S. Chen, N. Cumaranatunge, L. Delgass, W. N. Epling, W. S. Ribeiro, F. H., Effect of potassium and water vapor on the catalytic reaction of nitric oxide and dioxygen over platinum, Catal. Today 114 (2006) 57-63. Nakatsuji, T. Ruotoistenmäki, J. Komppa, V. Tanaka, Y. Uekusa, T., A catalytic NO reduction in periodic lean and rich excursions over Rh supported on oxygen storage capacity materials, Appl. Catal. B 38 (2002) 101-116. Nakatsuji, T. Yamaguchi, T. Sato, N. Ohno, H., A selective NOx reduction on Rh-based catalysts in lean conditions using CO as a main reductant, Appl. Catal. B 85 (2008) 61-70. Niakolas, D. Andronikou, Ch. Papadopoulou, Ch. Matralis, H., Influence of metal oxides on the catalytic behavior of Au/Al2O3 for the selective reduction of NOx by hydrocarbons, Catal. Today 112 (2006) 184-187. Nikolopoulos, A. A. Stergioula, E. S. Efthimiadis, E. A. Vasalos, I. A., Selective catalytic reduction of NO by propene in excess oxygen on Pt- and Rh-supported alumina catalysts, Catal. Today 54 (1999) 439-450. Ohtsuka, H. Tabata, T., Effect of water vapor on the deactivation of Pd-zeolite catalysts for selective catalytic reduction of nitrogen monoxide by methane, Appl. Catal. B 21 (1999) 133-139. Ohtsuka, H. Tabata, T. Hirano, T., Palladium-platinum-loaded sulfated zirconia: a highly durable catalyst for the reduction of nitrogen oxides by methane in the presence of water vapor and SOx, Appl. Catal. B 28 (2000) L73-L76. Okazaki, N. Osada, S. Tada, A., Deactivation by sulfur dioxide of alumina-based catalysts for selective catalytic reduction of nitrogen monoxide by ethene, Appl. Surf. Sci. 121-122 (1997) 396-99. Papaefthimious, P. Ioannides, T. Verykios, X. E., Catalytic incineration of volatile organic compounds Present in industrial waste streams, Appl. Thermal Eng. 18 (1998) 1005-1012. Park, G. G. Chae, H. J. Nam, I. -S. Choung, J. W. Choi, K. H., Deactivation of mordenite-type zeolite catalyst by HCl for the reduction of NOx with NH3, Micropor. Mesopor. Mat. 48 (2001) 337-343. Park, P. W. Boyer, C. L., Effect of SO2 on the activity of Ag/γ-Al2O3 catalysts for NOx reduction in lean conditions, Appl. Catal. B 59 (2005) 27-34. Pârvulescu, V. I. Grange, P. Delmon, B., Catalytic removal of NO, Catal. Today 46 (1998) 233-316. Qi, G. Yang, R. T. Rinaldi, F. C., Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts, J. Catal. 237 (2006) 381-392. Quincoces, C. E. Guerrero, S. Araya, P. González, M. G., Effect of water vapor over Pd-Co/SZ catalyst for the NO selective reduction by methane, Catal. Commun. 6 (2005) 75-80. Quincoces, C. E. Incollá, M. De Ambrosio, A. González, M. G., Rh-Co mordenite catalysts for the selective reduction of NO by methane, Stud. Surf. Sci. Catal. 143 (2000) 925-931. Salem, I. Courtois, X. Corbos, E. C. Marecot, P. Duprez, D., NO conversion in presence of O2, H2O and SO2: Improvement of a Pt/Al2O3 catalyst by Zr and Sn, and influence of the reducer C3H6 or C3H8, Catal. Commun. 9 (2008) 664-69. Sato, K. Yoshinari, T. Kintaichi, Y. Haneda, M. Hamada, H., Rh-post-doped Ag/Al2O3 as a highly active catalyst for the selective reduction of NO with decane, Catal. Commun. 4 (2003) 315-319. She, X. Flytzani-Stephanopoulos, M., Activity and stability of Ag-alumina for the selective catalytic reduction of NOx with methane in high-content SO2 gas streams, Catal. Today 127 (2007) 207-18. Shichi, A. Hattori, T. Satsuma, A., Involvement of NCO species in promotion effect of water vapor on propane-SCR over Co-MFI zeolite, Appl. Catal. B 77 (2007) 92-99. Shimizu, K. Higashimata, T. Tsuzuki, M. Satsuma, A., Effect of hydrogen addition on SO2 tolerance of silver-alumina for SCR of NO with propane, J. Catal. 239 (2006) 117-124. Summers, J. C. Baron, K., The effects of SO2 on the performance of noble metal catalysts in automobile exhaust, J. Catal. 57 (1979) 380-389. Taiwan EPA, http://www.epa.gov.tw/. Takahashi, N. Shinjoh, H. Iijima, T. Suzuki, T. Yamazaki, K. Yokota, K. Suzuki, H. Miyoshi, N. Matsumoto, S. Tanizawa, T. Tanaka, T. Tateichi, S. Kasahara, K., The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst, Catal. Today 27 (1996) 63-69. Tanaka, T. Okuhara, T. Misono, M., Intermediacy of organic nitro and nitrite surface species in selective reduction of nitrogen monoxide by propene in the presence of excess oxygen over silica-supported platinum, Appl. Catal. B 4 (1994) L1-L9. Tonetto, G. M. Damiani, D. E., Performance of Pd-Mo/γ-Al2O3 catalysts for the selective reduction of NO by methane, J. Mol. Catal. A 202 (2003) 289-303. Tseng, H. H. Wey, M. Y. Liang, Y. S. Chen, K. H., Catalytic removal of SO2, NO and HCl from incineration flue gas over activated carbon-supported metal oxides, Carbon 41 (2003) 1079-1085. Walker, A. P., Mechanistic studies of the selective reduction of NOx over Cu/ZSM-5 and related systems, Catal. Today 26 (1995) 107-128. Weber, R. Sakurai, T. Hagenmaier, H., Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts, Appl. Catal. B 20 (1999) 249-256. Wen, B. He, M. Schrum, E. Li, C., NO reduction and CO oxidation over Cu/Ce/Mg/Al mixed oxide catalyst in FCC operation, J. Mol. Catal. A 180 (2002) 187-192. Wey, M. Y. Chao, C. Y. Yu, L. J., The influences of heavy metals on PAHs formation during incineration, Toxicol. Environ. Chem. 56 (1996) 35-45. Wey, M. Y. Chen, J. C. Huang, H. C. Yeh, C. L., Oxidation of organic pollutants in incineration flue gas by a fluidized palladium catalyst, Combustion Sci. Technol. 175 (2003) 1211-1236. Wey, M. Y. Chen, J. C. Yang, W. Y. Huang, H. C., Catalytic oxidation of the organic compounds in the incineration flue gas by a commercial palladium catalyst, J. Air Waste Manage. Asso. 52 (2002) 198-207. Williams, F. J. Palermo, A. Tikhov, M. S. Lambert, R. M., Mechanism of alkali promotion in heterogeneous catalysis under realistic conditions: application of electron spectroscopy and electrochemical promotion to the reduction of NO by CO and by propene over rhodium, Surf. Sci. 482-485 (2001) 177-182. Xie, G. Liu, Z. Zhu, Z. Liu, Q. Ge, J. Huang, Z., Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent: I. Deactivation of SCR activity by SO2 at low temperatures, J. Catal. 224 (2004a) 36-41. Xie, G. Liu, Z. Zhu, Z. Liu, Q. Ge, J. Huang, Z., Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent: II. Promotion of SCR activity by SO2 at high temperatures, J. Catal. 224 (2004b) 42-49. Yang, C. C. Chang, S. H. Hong, B. Z. Chi, K. H. Chang, M. B., Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts, Chemosphere 73 (2008) 890-895. Yang, J. B. Fu, O. Z. Wu, D. Y. Wang, S. D., DRIFTS study of NO-H2 reaction over Pd/Al2O3 with excess oxygen, Appl. Catal. B 49 (2004) 61-65. Yasuda, K. Takahashi, M., The emission of polycyclic aromatic hydrocarbons from municipal solid waste incinerators during the combustion cycle, J. Air Waste Manage. Asso. 48 (1998) 441-447. Yentekakis, I. V. Lambert, R. M. Konsolakis, M. Kiousis, V., The effect of sodium on the Pd-catalyzed reduction of NO by methane, Appl. Catal. B 18 (1998) 293-305. Yoshinari, T. Sato, K. Haneda, M. Kintaichi, Y. Hamada, H., Positive effect of coexisting SO2 on the activity of supported iridium catalysts for NO reduction in the presence of oxygen, Appl. Catal. B 41 (2003) 157-169. Yoshinari, T. Sato, K. Haneda, M. Kintaichi, Y. Hamada, H., Remarkable promoting effect of coexisting SO2 on the catalytic activity of Ir/SiO2 for NO reduction in the presence of oxygen, Catal. Commun. 2 (2001) 155-158. Zhang, R. Alamdari, H. Kaliaguine, S., Water vapor sensitivity of nanosized La(Co, Mn, Fe)1−x(Cu, Pd)xO3 perovskites during NO reduction by C3H6 in the presence of oxygen, Appl. Catal. B 72 (2007) 331-341. Zhdanov, V. P. Kasemo, B., Mechanism and kinetics of the NO---CO reaction on Rh, Surf. Sci. Rep. 29 (1997) 31-90. Zheng, Y. Jensen, A. D. Johnsson, J. E. Thøgersen, J. R., Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants: Elucidation of mechanisms by lab- and pilot-scale experiments, Appl. Catal. B 83 (2008) 186-194. Zheng, Y. Jensen, A. D. Johnsson, J. E., Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant, Appl. Catal. B 60 (2005) 253-264. Zhu, Z. Liu, Z. Liu, S. Niu, H., Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts: effect of metal oxides addition and SO2, Appl. Catal. B 30 (2001) 267-276. Zimowska, M. Wagner, J. B. Dziedzic, J. Camra, J. Borzęcka-Prokop, B. Najbar, M., Some aspects of metal-support strong interactions in Rh/Al2O3 catalyst under oxidising and reducing conditions, Chem. Phys. Lett. 417 (2006) 137-142.
摘要: 本研究主要探討焚化廢氣條件與不同污染物(粒狀物、重金屬、二氧化硫、氯化氫和水氣)對觸媒催化一氧化氮和有機污染物之影響。研究內容分成三大部分,第一部分探討觸媒對一氧化氮之催化活性,了解金屬改質、氧氣濃度、還原劑、鈉添加含量對觸媒活性的影響,第二部分則利用石英管柱反應器探討二氧化硫、氯化氫、水氣之單一或多重因子對觸媒催化還原一氧化氮影響;第三部份著重於粒狀物、重金屬、二氧化硫、氯化氫的影響,於實驗室規模焚化爐進行探討單一或多重因子對觸媒催化一氧化氮和有機物活性之影響。本研究使用Rh/Al2O3、Pd/Al2O3和V2O5-WO3觸媒及改質後觸媒Rh-Na/Al2O3,並藉由BET、EA、XRD、SEM/EDS、TEM、ESCA和FTIR等分析,探討不同因子對觸媒反應效率與機制之影響。 研究結果指出Rh/Al2O3觸媒在溫度200-300oC比Pd/Al2O3觸媒有較佳催化還原活性,添加鈉明顯影響Rh/Al2O3和Pd/Al2O3觸媒之比表面積和金屬分散性,並於250-300oC促進觸媒還原一氧化氮至100%轉化率;Rh/Al2O3觸媒於高氧氣濃度下具有良好之一氧化氮催化活性,但當反應氣體含有二氧化硫和氯化氫時,由於Rh2(SO4)3和RhCl3生成,一氧化氮和一氧化碳轉化率將逐漸降低,而鈉的添加可明顯改善Rh/Al2O3觸媒於反應氣體中含有二氧化硫、氯化氫、水氣時之活性,因鈉可與硫或氯反應生成Na2SO4和NaCl,以抑制二氧化硫和氯化氫對Rh/Al2O3觸媒活性影響,水氣會和一氧化氮競爭吸附在觸媒活性位置上並增加NO3和H反應。 根據實驗室規模焚化爐系統測試結果,粒狀物、重金屬、二氧化硫和氯化氫明顯影響觸媒同時去除一氧化氮和PAHs之催化活性。當煙道氣含有粒狀物時,觸媒表面會被粒狀物所覆蓋,其含有之碳成分會促進觸媒催化一氧化氮活性,但抑制觸媒對多環芳香烴化合物之去除效率;鎘和鉛重金屬含量增加會降低觸媒對一氧化氮活性,但不改變活性相之化學型態;觸媒對PAHs之去除效率明顯受到鎘重金屬濃度增加所抑制,但會隨著鉛濃度增加而促進催化活性。當反應氣中含有酸性氣體時,會明顯抑制觸媒對於PAHs之活性,其觸媒對PAHs催化活性受到二氧化硫之影響大於氯化氫,但對於一氧化氮催化活性受到二氧化硫影響則小於氯化氫。不同焚化污染物對於觸媒催化去除一氧化氮之影響大小為氯化氫>重金屬>二氧化硫>粒狀物。由研究結果指出觸媒反應器可應用於焚化系統中去除污染物,但建議將反應器置於空氣污染控制設備最後一項以避免觸媒毒化。
This study investigates the effects of different pollutants (particulates, heavy metals, SO2, HCl, and H2O) on the performance of catalyst for the removals of NO and organic compounds in a simulated condition of waste incineration flue gas. Firstly, the effects of metal modification, oxygen concentration, reductant, and Na content on the activity of catalysts for NO removal were investigated. Then, the single and multiple effects of SO2, HCl, and H2O on the performance of the catalysts for NO reduction are elucidated in a quartz tube catalyst reactor. Finally, the single and multiple effects of particulates, acid gases, and heavy metals on the performance of catalysts for the removals of NO and organic compounds in a laboratory-scale incinerator were studied. Different catalysts (Rh/Al2O3, Pd/Al2O3 and V2O5-WO3) and modified catalysts (Rh-Na/Al2O3) were used in this study. The reaction mechanism of catalyst and the effects of different factors were evaluated by BET, EA, XRD, SEM/EDS, TEM, ESCA, and FTIR analyses. The results showed that Pd/Al2O3 catalyst had lower catalytic reduction activity than Rh/Al2O3 catalyst at 200-300oC. Adding Na significantly influenced the BET surface area and metal dispersion of Rh/Al2O3 and Pd/Al2O3 catalysts, and also increased the NO conversion to near 100% at 250-300oC. Rh/Al2O3 catalyst had good performance for NO removal at relatively high oxygen concentrations. However, the Rh/Al2O3 catalyst were gradually deactivated for NO and CO conversions when SO2 and HCl present in the flue gas due to the formation of Rh2(SO4)3 and RhCl3. The addition of Na on Rh/Al2O3 significantly improved the removal efficiency of NO when SO2, HCl, and H2O present in the flue gas. Adding Na to Rh/Al2O3 catalyst suppressed the deactivation effect of SO2 and HCl because of the formation of Na2SO4 and NaCl. H2O could compete with NO to adsorb on the active sites of Rh-Na/Al2O3 catalysts and enhance the formation of NO3 to react with H. According to the results of experiments performed by the laboratory-scale incinerator, particulates, heavy metals, SO2 and HCl had significant effects the activities of catalysts for simultaneous removals of NO and PAHs. When the flue gas contained particulates, the surface of the catalysts was covered by the particulates. The increases in the particulate concentrations in the flue gas suppressed the DRE of PAHs, but the increases in the carbon content on surface of catalysts promoted the NO conversions. The increased content of heavy metals Cd and Pb on the surface of catalysts decreased the activity of catalyst for NO removal, but did not change the chemical state of active phase. The DRE of PAHs by the catalysts was significantly suppressed by the increased concentrations of heavy metal Cd, but was promoted with high concentration of Pb. Both HCl and SO2 had negative effects on the performances of Rh/Al2O3, Rh-Na/Al2O3, and V2O5-WO3 catalysts for PAHs removal. The influence of SO2 was higher than HCl on the performances of the catalysts for PAHs removal, but was lower than HCl for NO removal. The influence levels of different pollutants on the performances of the catalysts for NO removal followed the sequence of HCl > heavy metals > SO2 > particulates. These findings imply that the catalyst reactor can be valid to decrease the emissions of pollutants in the waste incineration system. However, the catalytic reactor is suggested to be set up in the downstream of APCDs to mitigate the poisoning of catalysts.
URI: http://hdl.handle.net/11455/5719
其他識別: U0005-2907200917071600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2907200917071600
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。