Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5720
標題: 評估高溫好氧系統對高濃度有機廢水處理成效及系統菌相分析研究
The Treatment Efficiency Assessment of High Concentration Organic Wastewater and Microbial Community in a Thermophilic Aerobic Biological Treatment System
作者: 林慧蓉
Lin, Hui-Jung
關鍵字: 高溫好氧系統
thermophilic aerobic biological treatment process
比生長速率
比基質利用率
衰退係數
生長係數
動力參數
PCR-DGGE
specific growth rate
specific substrate utilization rate
decay coefficient
yield coefficient
kinetic model
PCR-DGGE
出版社: 環境工程學系所
引用: 王宇萱(2008)“高溫好氧處理對造紙纖維廢水之可行性初步研究” 碩士論文,國立中興大學環境工程學系,台中。 江舟峰(1998)“以呼吸儀評估染整廢水高溫好氧處理可行性研究”,朝陽科技大學,台中。 江舟峰(2001),“氣泡式呼吸儀的測定原理與操作技巧”技術報告,朝陽科技大學,台中。 吳勇興 (2000)“自發性高溫好氧處理程序之研究:系統參數測定演算法之開發”博士論文,國立中興大學環境工程學系,台中。 沈育資(2008)“高溫好氧油脂分解菌動力參數研究” 碩士論文,國立中興大學環境工程學系,台中。 林宜儒(2004)“生物固體物做為受污染土壤生物復育添加劑之可行性探討” 碩士論文,國立中興大學環境工程學系,台中。 林慈儀(2008)“高溫好氧系統生物分解動力學及菌相分析之研究” 碩士論文,國立中興大學環境工程學系,台中。 許以樺(2000)“以高溫好氧處理油脂廢水可行性研究” 碩士論文,國立中興大學環境工程學系,台中。 陳文欽,鄭幸雄(1997)“呼吸儀用於石化廢水之特性研究”,中國環境工程學刊,第七卷,第二期,第203頁。 程郁璁(2005)“厭氧生物處理四氯乙烯代謝機制及菌相之探討” 碩士論文,國立中興大學環境工程學學系,台中。 歐陽嶠暉(2000)下水道工程學,長松文化公司。 鄭如琇(2006)“以微生物組成探討厭氧發酵系統之產氫效能” 碩士論文,國立中興大學環境工程學學系,台中。 蘇世昌(1999)“受多環芳香族碳氫化合物-奈污染環境之生物復育可行性研究”,碩士論文,國立中興大學環境工程學系,台中。 Amann, R., H. Lemmer, and M. Wagner (1998) “Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques” FEMS Microbiology Ecology 25: 205-215. Banat, F. A., S. Prechtl, and F. Bischof (2000) “Aerobic thermophilic treatment of sewage sludge contaminated with 4-nonylphenol” Chemosphere 41: 297-302. Barr, T., J. Taylor, and S. Duff (1996) “Effect of HRT, SRT and temperature on the performance of activated sludge reactors treating bleached kraft mill effluent” Water Res. 30: 799–810. Barr, T. A., J. M. Taylor, and S. J. B. Duff (1996) “Effect of HRT,SRT and temperature on the performance of activated sludge reactors treating bleached kraft mill effluent” Water Res. 30: 799–810. Beaudet, R., C. Gagnon, J. G. Bisaillon, and M. Ishaque (1990) “Microbiological aspects of aerobic thermophilic treatment of swine waste” Appl. Environ. Microbiol. 56: 971-976. Beffa, T., M. Blanc, P. F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer, and M. Aragno (1996) “Isolation of Thermus strains from hot composts (60 to 80℃)” Appl. Environ. Microbiol. 62: 1723-1727. Bérubé, P. R. and E. R. Hall. (1999) “Treatment of evaporator condensate using a high temperature membrane bioreactor: determination of maximum operating temperature and system costs” In: Proceedings of TAPPI 1999 International Environmental Conference, Toronto, Canada., pp 769–80. Black, M. I., P. V. Scarpino, C. J. O''Donnell, K. B. Meyer, J. V. Jones, and E. S. Kaneshiro (1982) “Survival rates of parasitic eggs in sludge during aerobic and anaerobic digestion” Appl. Environ. Microbiol. 44: 1138-1143. Blackburn, J. W. (2000) “Profitable odor reduction and heat production from swine wastes using advanced aerobic thermophilic treatment” In: Moore, J. A. (Ed), Proc. Eighth International Symposium on Animal, Agricultural and Food Processing Waste. Des Moines, IA, 537–546. Blackburn, J. W. (2001) “Effect of swine waste concentration on energy production and profitability of aerobic thermophilic processing” Biomass Bioenergy 21: 43-51. Blackburn, J. W. (2002) “Advanced aerobic thermophilic methods and systems for treating organic materials” United States patent application 2002. Bohdziewicz, Jolanta, and Ewa Sroka (2006) “Application of hybrid systems to the treatment of meat industry wastewater” Desalination 198: 33-40. Brock, T. D., and K. L. Boylen (1973) “Presence of thermo-philic bacteria in laundry and domestic hot-water hea-ters” Appl. Microbiol. 25: 72-76. Brown, S. C., C. P. L. Grady, and H. H.Tabak (1990) “ Biodegradation Kinetics of Substituted Phenolics: Demonstration of a Protocol Based on Electrolytic Respirometry ” Wat. Res. 24: 853-861. Burt, P., M. H. Littlewood, S. F. Morgan, B. N. Dancer, and J. C. Fry (1990) “Venturi aeration and thermophilic aerobic sewage digestion in small-scale reactors” Appl. Microbiol. Biot. 33: 721-724. Callia, B., B. Mertoglua, K. Roestb, and B. Inancc (2006) “Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate” Bioresour. Technol. 97: 641-647. Cetin, F.D., and G. Sürücü (1990) “Effects of temperature and pH on the settlability of activated sludge flocs” Water Sci. Technol. 22: 249-254. Colvin, R.J., A.F. Rozich, V. D’Aco, G. Hollerbach, and D. Mitchell (1996) “Thermophilic aerobic treatment of high strength groundwater: full-scale system operations” In: Proceedings WEFTECH “96”, Water Environment Federation, Alexandria, VA. Couillard, D., and S. Zhu (1993) “Thermophilic aerobic process for the treatment of slaughterhouse effluents with protein recovery” Environ. Pollut. 79:121-126. Daniel, H. Zitomer, Duran Metin, Albert Richard, and Guven Engin(2007)“Thermophilc aerobic granular biomass for enhanced settleability” Wat. Res. 41: 819-825. D’Elia, J. and W. Chesbro (1992) “Maintenance energy demand affects biomass synthesis but not cellulase production by a mesophilic Clostridium” Indust. Microbiol. 10: 123–133. de Lucas, A., L. Rodriguez, J. Villasenor, and F. J. Fernandez (2005) “Biodegradation kinetics of stored wastewater substrates by a mixed microbial culture” Biochem. Eng. J. 26 : 191-197 Dias, J. C. T., R. P. Rezende, C. M. Silva, and V. R. Linardi (2005) “Biological treatment of kraft pulp mill foul condensates at high temperatures using a membrane bioreactor” Process Biochemistry 40: 1125-1129. Dorigo, U., L. Volatier, and J. F. Humbert (2005) “Molecular approaches to the assessment of biodiversity in aquatic microbial communities” Wat. Res. 39 : 2207-2218. Doyle, Y., R. Guay, J. de la Noue, and J. Asselin. (1986) “Traitement aerobie dulisier de porc: aspects microbiens” Can. J. Microbiol. 32: 679-686. Edwars V. H. (1970) “The influence of high substrate concentrations on microbial kinetics, Biotechnol” Bioeng. 12: 679- 712. Ferris, M. J., and D. M. Ward. (1997) “Seasonal distrbutions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis” Appl. Environ. Microbiol. 63: 1375-1381. Fuchs, H. (1973) “Biological decomposition of organic material” United States patent 3: 113. Gaudy, Jr., A. F., A. Ekambaram, A. F. Rozich, and R. J. Covin (1990) “Comparision of respirometric methods for determination of biokinetic constants for toxic and nontoxic wastes” Proc. 33th Ind. Waste Conf., Purdue University, pp 393-403. Gaudy Jr., A. F., A. Ekambaram, and A. F. Rozich (1988) “A respirometric method for biokineticcharacterization of toxic wastes ” Presented at the 43rd Annual Purdue Industrial Waste Conference, West Lafayette, Indiana. George, N., and L. Andrew (2003) “Control of filamentous organisms in food processing wastewater treatment by intermittent aeration and selectors” Journal of Chemical Technol. & Biotechnol. 78: 420–430. Goudar, C. T., and K. A. Strevett (1998) “Comparison of relative rates of BTEX biodegradation using respirometry” J. Indu. Microbiol. Biotechnol. 2: 11. Grady, C. P. L., Jr., J. S. Dang, D. M. Harvey, A. Jobbagy, and X. L. Wang (1989) “ Determination of Biodegradation Kinetics Through Use of Electrolytic Respirometry” Wat. Sci. Tech. 21: 957-968. Grunditz, C., and G. Dalhammar (2001) “Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter” Wat. Res. 35: 433-440. Hansen, E., L. Zadura, S. Frankowski, and M.Wachowicz (1999) “ Upgrading of an activated sludge plant with floating biofilm carriers at Frantscach Swiecie S.A. to meet the new demands of year 2000” Wat. Sci. Technol. 40: 207-214. Huber, H., M. Thomm, H. Konig, G. Thies, and K. O. Stetter (1982) “Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen” Arch. Microbiol. 132: 47-50. Huguenin, J., and J. Colt. (1989) “Design and Operating Guide for Aquaculture seawater system” Elsevier Amsterdam 161-163. Ingraham, J. L., O. Maaloe, and F. C. Neidhardt (1983) “Growth of the bacteria cell” Ssuderland, Massachuseets. Jahren, S. J., and H. Odegaard (2000) “Treatment of high strength wastewater in thermophilic anaerobic-aerobic moving bed biofilm reactors” Environ. Technol. 21: 1343-1356. Jahren, S. J., J. A. Rintala, and H. Odegaard (2002) “Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions” Water Res. 36: 1067-1075. Jewell, W. J., and R. M. Kabrick (1980) “Autoheated aerobic thermophilic digestion with aeration ” J. WPCF 52: 512-523. Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe (1983) “Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from submarine hydrothermal vent” Arch. Microbiol. 136: 254-261. Juteau, P. (2006) “Review of the use of aerobic thermophilic bioprocesses for the treatment of swine waste” Livest. Sci. 102: 187-196. Juteau, P., D. Tremblay, C. B. Ould-Moulaye, J. G. Bisaillon, and R. Beaudet (2004) “Swine waste treatment by selfheating aerobic thermophilic bioreactors” Wat. Res. 38: 539-546. Juteau, P., D. Tremblay, R. Villemur, J. G. Bisaillon, and R. Beaudet (2005) “Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor treating swine waste” Appl. Microbiol. Biot. 66: 115-122. Kambhu, K., and J. F. Andrews (1969) “Aerobic thermophilic process for the biological treatment of wastes-simulation studies” J. WPCF 41: R127-R141. Kumar, A., S. Kumar, and S. Kumar (2005) “Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194” Biochem. Eng. J. 22: 151-159. Kurian, R., C. Acharya, G. Nakhla, and A. Bassi (2005) “Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors” Water Research 39: 4299-4308. Kurian, R., G. Nakhla, and A. Bassi (2006) “Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor (MBR)” Chemosphere 65: 1204-1211. Kurisu, F., H. Satoh, T. Mino, and T. Matsuo (2002) “Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method” Water Research 36: 429-438. LaPara, T. M., and J. E. Alleman (1999) “Thermophilic aerobic waste treatment, review paper” Wat. Res. 33: 895-908. LaPara, T. M., C.H. Nakatsu, J. E. Alleman, and A. Konopka (1999) “Thermophilic aerobic biological wastewater treatment : process performance and community analysis” In: Water Environment Federation and Purdue Industrial Wastes Conference, June 27-30,1999. IN, USA, pp. 79-92. Lee, J. W., H. W. Lee, S. W. Kim, S. Y. Lee, Y. K. Park, J. H. Han, S. I. Choi, Y. S. Yi, and Z. Yun (2004) “Nitrogen removal characteristics analyzed with gas and microbial community in thermophilic aerobic digestion for piggery waste treatment” Wat. Sci. Technol. 49, 349–357. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. (1997) “Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA” Appl. Environ. Microbiol. 63: 4516-4522. Loynachan, T. E., W. V. Bartholomew, and A. G. Wollum. (1976) “Nitrogen transformations in aerated swine manure slurries. J.Environ” Qual. 5:293-297. Lund, E., and B. Niessen (1983) “The survival of enteroviruses in aerated and unaerated cattle and pig slurry” Agric. Wastes 7: 221-233. Marti, O. G., C. V. Booram, and O. M.Hale (1983) “Survival of eggs and larvae of swine nematode parasites in aerobic and anaerobic waste treatment systems” J. Environ. Qual. 9: 401-405. McNary, R. R., R. W. Wolford, and M. H. Dougherty (1956) “ Pilot Plant Treatment of Citrus Waste Water by Activated Sludge” Sewage Indust. Wastes 28: 894-905. Me´vel, G., and D. Prieur (2000) “Heterotrophic nitrification by a thermophilic Bacillus species as influenced by different culture conditions” Can. J. Microbiol. 46: 465– 473. Metcalf, and Eddy, Inc., (1991)“Wasterwate engineering:treatment , disposal, and reuse, 3rd Ed” McGraw-Hill, Inc., New York, NY, U.S.A.. Metcalf and Eddy Inc., G. Tchobanoglous, F. L. Burton, and H. D. Stensel (2003) “Wastewater Engineering: Treatment and Reuse” McGraw-Hill, Boston. Mikkelsen, H., and K. Keiding (2002) “The shear sensitivity of activated sludge: an evaluation of the possibility for a standardised floc strength test” Water Res. 36: 2931-2940. Mohaibes, M. and H. Heinonen-Tanski (2004) “Aerobic thermophilic treatment of farm slurry and food wastes” Bioresource Technology 95: 245-254. Morris, C. E., M. Bardin, O. Berge, P. Frey-Klett, N. Fromin, H. Girardin, M. H. Guinebretie` re, P. Lebaron, J. M. Thie´ ry, and M. Troussellier (2002) “Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999” Microb. Mol. Biol. Rev. 66: 592–616. Olsen, G. J., D. J. Lane, S. J. Giovannoni, and N. R. Pace (1986) “Microbial ecology and evolution: a ribosomal RNA approach” Annu. Rev. Microbiol. 40: 337-365. Pace, N. R., D. A. Stahl, D. J. Lane, and G. J. Olsen (1986) “The analysis of natural microbial populations by ribosomal RNA sequences” Adv. Microb. Ecol. 9: 1-55. Pagilla, Krishna R., Hyungjin Kim, and Tapana Cheunbarn (2000) “Aerobic thermophilic and anaerobic mesophilic treatment of swine waste” Wat. Res. 34: 2747-2753. Pagilla, Krishna R., Hyungjin Kim, and Tapana Cheunbarn (2007) “Thermophilic aerobic granular biomass for enhanced settleability” Wat. Res. 41: 819-825. Rittmann, B. E., and P. L. McCarty (2001) “Environmental Biotechnology: Principles and Application” McGRAW-HILL INTERNATIONAL EDITIONS, Singapore: 16, 339. Rozich, A. F., and R. J. Colvin (1997) “Design and oper-ational considerations for thermophilic aerobic reactors treating high strength wastes and sludges” In Proceedings of the 52nd Industrial Waste Conference, Purdue University, ed. J. E. Alleman, Ann Arbor Press, Ann Arbor, MI, U.S.A.. Rozich, A. F., and K. Bordacs (2002) “Use of thermophilic biological aerobic technology for industrial wastewater treatment” Wat. Sci. Tech. 46: 83-89. Russell, J. B., and G. M. Cook (1995) “Energetics of bacterial growth: balance of anabolic catabolic reactions” Microbiol. Reviews 59: 48–62. Salles, J. F., F. A. De Souza, and J. D. van Elsas (2002) “Molecular method to assess the diversity of Burkholderia species in environmental samples” Appl. Environ. Microbiol. 68: 1595-1603. Sekiguchi, Y., T. Yamada, S. Hanada, A. Ohashi, H. Harada, and Y. Kamagata (2003) “Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level” Systematic and Evolutionary Microbiol. 53: 1843–1851. Stenstrom, M. K., and R. G. Gilbert (1981) “Effects of alpha, beta, and theta factor upon the design, specification and operation aeration systems” Wat. Res. 15: 643-654. Strauch, D. (1991) “Survival of pathogenic microorganisms and parasites in excreta, manure and sewage sludge” Rev. Sci. Tech. 10: 813-846. Strauch, D. (1998) “Pathogenic microorganisms in sludge. Anaerobic digestion and disinfection methods to make sludge usable as a fertilizer” Eur. Water Manag. 1: 12-26. Sürücü, G. A. (1975) “Thermophilic aerobic treatment of high-strength wastewaters with recovery of protein” Thermophilic aerobic wastewater treatment 907 Unpublished Ph. D. Thesis, University of Illinois, Champaign-Urbana. Sürücü, G. (1999) “Growth requirements of thermophilic aerobic microorganisms in mixed cultures for the treatment of strong wastes” Wat. Sci. Tech. 40: 53-60. Suvilampi, J., and J. Rintala (2002) “Comparison of activated sludge process at different temperatures: 35℃, 27-55℃, and 55℃” Environ. Technol. 23: 1127-1134. Suvilampi, J., A. Lehtomäki, and J. Rintala (2003) “Comparison of laboratory-scale thermophilic biofilm and activated sludge processes integrated with a mesophilic activated sludge process” Bioresource Technol. 88: 207-214. Suvilampi, J., A. Lehtomäki, and J. Rintala (2005) “Comparative study of laboratory-scale thermophilic and mesophilic activated sludge processes” Wat. Res. 39: 741-750. Suvilampi, J., A. Lehtomaki, and J. Rintala (2003) “Comparison of laboratory-scale thermophilic biofilm and activated sludge processes integrated with a mesophilic activated sludge process” Bioresour. Technol. 88: 207–214. Suvilampi, J., J. Rintala, and J. Nuortila-Jokinen (2003) “ On-site aerobic suspended carrier biofilm treatment for pulp and paper mill process water under high and varying temperatures” Tappi Journal 2: 16. Tardif, O., and E. R. Hall, (1997) “Alternatives for treating recirculated newsprint whitewater at high temperatures” Water Sci. Technol. 35: 57-65. Tchobanoglous, G., F. L. Burton, and D. H. Stensel (2003) “Wastewater engineering treatment and reuse, 4th ed.” The McGraw-Hill Companies, New York, U.S.A.. Terwilleger, A.R., and L. S. Crauer (1975) “Liquid composting applied to agricultural wastes. Proc” Managing livestock wastes: Third International Symposium on Livestock Wastes. St-Joseph, MI, 501-505. Tischer, R. G., L. R. Brown, and D. W. Cook (1962) “Decomposition of wastewater by thermophilic microor-ganisms. J ” Wat. Pollut. Control Fed 34: 1244-1255. Torsvik, V., J. Goksøyr, and F. L. Daae (1990) “High diversity in DNA of soil bacteria” Appl. Environ. Microbiol. 56: 782–787. Torsvik, V., L. Øvreas, and T. F. Thingstad (2002) “Prokaryotic diversity - magnitude, dynamics and controlling factors” Science 296: 1064-1066. Tripathi, C., and D. Allen (1999) “Comparison of mesophilic and thermophilic aerobic biological treatment in sequencing batch reactors treating bleached kraft pulp mill effluent” Water Res. 33: 836–846. Ugwuanyi, J. O. (2008) “Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation” Bioresource Technol. 99: 3279–3290. US EPA (1990) “Autothermal thermophilic aerobic digestion of municipal wastewater sludge” EPA/625/10-90/007. Visvanathan, C., M. K. Choudhary, M. T. Montalbo, and V. Jegatheesan (2007) “Landfill leachate treatment using thermophilic membrane bioreactor” Desalination 204: 8-16. Vogelaar, J. C. T., A. Klapwijk, J. B. Van Lier, and W. H. Rulkens (2000) “Temperature effects on the oxygen transfer rate between 20 and 55℃” Wat. Res. 34: 1037-1041. Vogelaar, J., J. van Lier, A. Klapwijk, M. de Vries, and G. Lettinga (2002) “Assessment of effluent turbidity in mesophilic and thermophilic activated sludge reactors-origin of effluent colloidal material” Appl. Microbiol. Biotechnol. 59: 105-111. Votruba, J., J. Pazlarova, M. Dvorakova, L. Vachova, M. Strnadova, H. Kucerova, V. Vinter, R. Zourabian, and J. Chaloupka (1991) “External factors in the regulation of the synthesis of an extracellular proteinase in Bacillus megaterium: effect of temperature” Microbiol. and Biotechnol. 35: 352-357. Wang, S. J. and K. C. Loh (1999) “Modeling the role of metabolic intermediates in kinetics of phenol biodegradation” Enzyme and Microbial Technol. 25: 177-184. Yi, Y.S., S. Kim, S. An, S. I. Choi, E. Choi, and Z.Yun (2003) “Gas analysis reveals novel aerobic deammonification in thermophilic aerobic digestion” Water Sci. Technol. 47: 131-138. Yonug, J. C. and R. Baumann (1976) “The electrolytic respirometer-I: factors affecting oxygen uptake measurements” Wat. Res. 10: 1031-1040. Yonug, J. C. and R. Baumann (1976) “The electrolytic respirometer-II: use in water pollution control plant laboratory” Wat. Res. 10: 1141-1149. Young, J. C. (1998) “On-Line Respirometers for Treatment Plant Monitoring and Control” University of Arkansas Fayetteville, Arkansas. Zita, A., and A. Hermansson (1997) “Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs” Appl. Environ. Microbiol. 63: 1168-1170.
摘要: 高溫好氧生物處理系統具有佔地面積小、可有效抑制致病菌、降解速率快、污泥產率低、操作穩定性高及基質利用速率高(是中溫菌之3~10倍)等優勢;但對於實場操作尚未建立完整之理論動力參數及菌相分析研究,需進一步探討其相關參數及系統菌群結構。 本研究以馴化篩選出高溫好氧之高濃度有機物分解菌、油脂分解菌及纖維素分解菌添加至一32 L之連續流反應槽中,將操作溫度控制於55℃,以麩胺酸及蔗糖為模擬基質,控制進流基質COD約10,000 mg/L,待馴化穩定後評估系統降解高濃度有機污染物之可行性,且探討高溫菌之分解動力參數。此外,利用分子生物技術PCR-DGGE,探討高溫好氧系統中混合菌群之組成,以期快速準確的鑑定系統中的菌群結構與變化。 高溫好氧反應槽連續流實驗結果顯示,當系統微生物馴養穩定後sCOD之生物降解率最高可達90%,呈現高溫系統對高濃度廢水處理之優勢;針對高濃度含氮廢水之去除效益,以質量平衡說明每日進流廢水理論氨氮量為2190 mg,經高溫好氧系統處理後之出流水所測得TKN濃度最高可去除78%,顯示廢水中氨氮因系統操作於高溫條件下,可以揮發形式去除水體中氨氮。 比較不同基質濃度之批次結果,高溫菌之比生長速率大致上呈現增加之趨勢,歸因於溫度愈高而使微生物體內的生化反應速率愈快,而使高溫環境下之微生物的比生長速率會明顯提升;以高濃度基質(10,000~20,000 mg/L)相較低濃度基質(1,000~5,000 mg/L),高濃度基質顯示出有較高之比基質利用率,約為低濃度q值三倍以上,充分展現高溫好氧系統針對高濃度有機廢水處理上之優勢。 以批次衰退試驗推論系統中微生物生長係數,系統中Ki = 0.13 mg-cell/mg-cell¬-d換算Yobs = 0.21 mg-cell/mg-COD,與中溫菌相比有較高衰退係數且低生長係數特性,於實場應用上有助污泥減容及降低污泥後續處理處置成本。利用不同基質濃度之批次實驗所求得高溫好氧生物降解之反應動力參數,以五種動力模式推估結果顯示,Haldane、Aiba及Teissier模式,較能以簡單的模式模擬本系統微生物對基質之動力模式。 利用PCR-DGGE分析高溫好氧馴化槽的菌相組成,以968f-gc及1392r引子組經PCR反應後,使用變性梯度30~70%的DGGE膠體做為族群分析的最適條件,DGGE圖譜上之亮帶經切膠回收及定序比對後,顯示高溫系統中的優勢族群主要為Bacillus sp.、Tepidiphilus sp.及Caldilinea aerophila gene。
The advantages of thermophilic aerobic biological system include smaller area requirement, destruction of most pathogenics, high biodegradation rates, low sludge yields, excellent process stability, and higher substrate utilization rate. But the theoretical knowledge, such as kinetic paramters of biodegradation and microbial community, is still unclear for the application of the system in practice. Farther research on relevant design parameters, operation requirements, and microbial community are needed. In this research, cultures with the degradation ability of high concentration organic, oil-content, and pulp wastewater were added to a thermophilic continuous flow bioreactor of 32 L. The artificial wastewater consists of glutamic acid and sucrose for the influent substrate of 10,000 mg-COD/L. The bioreactor was operated at 55℃. When the system reached to the state, the treatment efficiency of high concentration organic wastewater was evaluated, and the kinetic parameters for the thermophilic biodegradation parameters were determined. Besides, PCR-DGGE was employed to determine the microbial community of mixed culture in this bioreactor. The result showed that the highest removal efficiency of sCOD is up to 90% in the system. It confirms that the thermophilic aerobic biological treatment process has exhibited considerable advantages for the treatment of high-strength wastewaters. The removal rate of TKN from the influent with TKN mass of 2190 mg daily calculated by mass balance is up to 90%. It shows that the system could eliminate ammonia nitrogen by stripping. The results of batch test for different substrate concentrations showed that the specific growth rate almost tended to increase with an increase in substrate concentrations because of operating at higher temperature. Comparing with low substrate concentration conditions, the high substrate concentration got higher specific substrate utilization rate over 3 times. The result of batch test for microbial decay to inference the growth coefficient of microbial in the system showed that Ki is 0.13 mg-cell/mg-cell¬-d, and from which the Yobs of 0.21 mg-cell/mg-COD is obtained. Comparing with mesophilic microbial, thermophilic microbial has higher decay coefficient and lower growth coefficient. The result suggested that the thermophilic microbial can be used in decreasing sludge production. Additionally, a nonlinear regression technique was employed to determine the kinetic parameters of the thermophilic aerobic biodegradation process, and it suggested that Haldane, Aiba, and Teissier models can be successfully used for this study. The molecular approach of PCR-DGGE was used to assess microbial diversity in the thermophilic aerobic biological treatment bioreactor. PCR amplifications were carried out by 968f-gc and 1392r primer sets which target with the 16S rDNA universal region of eubacteria. The linear denaturing gradient of DGGE ranging from 30% to 70% was for the analysis of mixed thermophilic microbial populations. DGGE banding patterns were evaluated, and bacterial populations were identified by sequencing individual bands. As a result, the species of Bacillus sp., Tepidiphilus sp., and Caldilinea aerophila genewere were certainly the dominant microorganisms in the bioreactor.
URI: http://hdl.handle.net/11455/5720
其他識別: U0005-2907200918190100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2907200918190100
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.