Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5723
標題: 電化學處理MSWI飛灰無害化之研究
A Study on MSWI Fly Ash Innoxious Treatment by Using an Electrochemical Innovation Process
作者: 郭韋廷
Kuo, Wei-Ting
關鍵字: MSWI fly ash
MSWI飛灰
TCLP
Electrochemical processes
Heavy metals
水洗
電化學處理
重金屬
出版社: 環境工程學系所
引用: 王哲煒,「比較化學混凝、電化學混凝及Fenton法處理乳膠造紙廢水之研究」,碩士論文,淡江大學水資源及環境工程學系,2009。 王薪嘉,「MSWI飛灰中重金屬經電沉積法回收後資源化之研究」,碩士論文,國立中興大學環境工程學系,台中,2008。 中華民國環保法規資料中心網站:http://law.epa.gov.tw/zh-tw/ 。 台灣電力公司網站:http://www.taipower.com.tw/ 。 台灣自來水公司網站:http://www.water.gov.tw/ 。 行政院環保署網站:http://www.epa.gov.tw/index.aspx 。 行政院環保署環境檢驗所網站:http://www.niea.gov.tw/ 。 行政院環保署,事業廢棄物管制資訊網網站:http://waste.epa.gov.tw/prog/IndexFrame.asp 。 行政院環保署,環境督察總隊台北辦公室:http://ivy4.epa.gov.tw/swims/index.htm 。 行政院環境保護署環境保護人員訓練所,「無機性廢水處理」,2007。 行政院環境保護署環境保護人員訓練所,「有害事業廢棄物中間處理技術」,2005。 何鴻哲,「垃圾焚化飛灰中揮發性重金屬之移動特性」,博士論文,淡江大學水資源及環境工程學系,台北,2008。 周常華,「焚化底渣/氟化鈣污泥之共同熔融結晶化熔渣之特性及其資材化研究」,碩士論文,國立台灣大學環境工程研究所,台北,2007。 林家禾,「垃圾焚化飛灰中無機氯鹽對重金屬溶出之影響」,碩士論文,淡江大學水資源及環境工程研究所,台北,1995。 林奇瑩,「利用電沉積法處理經酸洗後MSWI飛灰回收液之重金屬效能研究」,碩士論文,國立中興大學環境工程學系,台中,2009。 林凱隆,「都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究」,博士論文,國立中央大學環境工程研究所,桃園,2002。 林建三等,「固體廢棄物處理」,2004。 周政賢,「利用電動力法處理MSWI飛灰重金屬之研究」,碩士論文,國立中興大學環境工程研究所,台中,2007。 房士祺,「電混凝處理方法對廢水處理效率提昇之研究」,碩士論文,朝陽科技大學環境工程與管理系,台中,2004。 郭益銘,「焚化灰渣玻璃化之評估研究」,博士論文,國立成功大學環境工程學系,台南,2004。 郭淑德、許讚全、郭麗雯、陳小姿,「飛灰利用之研究」,經濟部研究發展專題,1986。 陳岱伯,「電化學處理反應系統促進硝酸鹽污染物去除效率之研究」,碩士論文,朝陽科技大學環境工程與管理系,台中,2004。 張漢昌,「廢水處理」,2000。 黃建宏、章日行,「探討電混凝處理含重金屬 Cu、Ni 及Cr 廢水之去除機制」,中華民國環境工程學會廢水處理技術研討會論文,2009。 黃進益譯,「電化學的原理與應用」,1998。 楊仁泊、廖文彬,「國內垃圾焚化飛灰水萃之基本特性」,中華民國環境工程學會廢棄物處理技術研討會,2006。 蕭江碧、駱尚廉、郭昭吟,「電膠羽浮除法對建築物中水再利用技術之研究」,內政部建築研究所研究計畫成果報告,2000。 謝慶弘,「以水洗酸溶處理垃圾焚化飛灰可行性之研究」,碩士論文,國立中興大學環境工程學系,台中,2003。 Abbas, Z., Moghaddam, A. P. and Steenari B. M., “Release of salts from municipal solid waste combustion residues”, Waste Management, Vol. 23, PP. 291-305, 2003. Acer, Y. B., Lee, H. and Gale, R. J.,“Phenol removal from kaolinite by electrokinetics”, Journal of Geotechnical Engineering, Vol. 118, PP. 1837-1852, 1992. Alorro, R. D., Mayumi Ito, N. H. and Tsunekawa M., “Recovery of heavy metals from MSW molten fly ash by CIP method”, Hydrometallurgy, Vol. 97, PP. 8-14, 2009. Barbhuiya, S.A., Gbagbo, J.K., Russell, M.I. and Basheer P.A.M., “Properties of fly ash concrete modified with hydrated lime and silica fume”, Construction and Building Materials, Vol. 23, PP. 3233-3239 , 2009. Bazrafshan, E. Mahvi, A. H., Nasseri, S., Mesdaghinia, A. R., Vaezi, F. and Nazmara Sh., “Removal of cadmium from industrial effluents by elecrtocoagulation process using iron electrodes”, Iran. J. Environ. Health. Sci. Eng. Vol. 3, No. 4, PP. 261-266, 2006. Belkacem, M., Khodir, M. and Abdelkrim, S., “Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique”, Desalination, Vol. 228, PP. 245-254, 2008. Bhattacharyya, S., Donahoe, R. J. and Patel, D., “Experimental study of chemical treatment of coal fly ash to reduce the mobility of priority trace elements”, Fuel, Vol. 88, PP. 1173-1184, 2009. Canizares, P., Jimenez, C., Martinez, F., Rodrigo, M. A. and Saez, C., “The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters”, Journal of Hazardous Materials, Vol. 163, PP. 158-164, 2009. Chen, G., “Electrochemical technologies in wastewater treatment”, Separation and Purification Technology, Vol. 38, PP. 11-41, 2004. Chou, J. D., Wey, M. Y. and Chang S. H., “Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure”, Journal of Hazardous Materials, Vol. 162, PP. 1000-1006, 2009. Chiang, K. Y. and Hu, Y. H., “Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process”, Waste Management, 2010. Dai, Y., Qian, G., Cao, Y., Chi, Y., Xu, Y., Zhou, J., Liu, Q., Xu, Z. P. and Qiao, S. Z., “Effective removal and fixation of Cr(VI) from aqueous solution with Friedel’s salt”, Journal of Hazardous Materials, Vol. 170, PP. 1086-1092, 2009. Doulakas, L., Novy, K., Stucki, S. and Comninellis, Ch., “Recovery of Cu, Pb, Cd and Zn from synthetic mixture by selective electrodeposition in chloride solution”, Electrochimica Acta, Vol. 46, PP. 349-356, 2000. Ersoy, B., Kavas, T., Evcin A., Bas_pınar, S., Sarııs A. and Once G., “The effect of BaCO3 addition on the sintering behavior of lignite coal fly ash”, Fuel, Vol. 87, PP. 2563-2571, 2008. Guillaume, P., Leclerc, N., Lapicque, F. and Boulanger, C., “Electroleaching and electrodeposition of zinc in a single-cell process for the treatment of solid waste”, Journal of Hazardous Materials, Vol. 152, PP. 85-92, 2008. Huang, S. J., Chang, C. Y., Mui, D. T., Chang, F. C., Lee, M. Y. and Wang C. F., “Sequential extraction for evaluating the leaching behavior of selected elements in municipal solid waste incineration fly ash”, Journal of Hazardous Materials, Vol. 149, PP. 180-188, 2007. Ito, R., Dodbiba, G., Fujita, T. and Ahn J. W., “Removal of insoluble chloride from bottom ash for recycling”, Waste Management, Vol. 28, PP. 1317-1323, 2008. Jala, S. and Goyal, D., “Fly ash as a soil ameliorant for improving crop production—a review”, Bioresource Technology, Vol 97, PP. 1136-1147, 2006. Jakob, A., Stucki, S.,“Complete heavy metal removal from fly ash by heat treatment: control mechanisms and parameters.”, In: Congress Proceedings R’97-Recovery, Recycling, Re-integration, Vol. III, PP. 51-55.,1997 Kida, A., Noma, Y. and Imada, T., “Chemical speciation and leaching properties of elements in municipal incinerator ashes”, Waste Management, Vol. 16, PP. 527-536, 1996. Koparal, A. S., Yildiz, Y. S., Keskinler, B. and Demircioglu, N., “Effect of initial pH on the removal of humic substances from wastewater by electrocoagulation”, Separation and Purification Technology, Vol. 59, PP. 175-182, 2008. Lide, D. R., “CRC handbook of chemistry and physics”, 2008. Mangialardi, T., Paolini, A. E., Polettini. A. and Sirini P., “Optimization of the solidificationr/stabilization process of MSW fly ash in cementitious matrices”, Journal of Hazardous Materials, Vol 70, PP. 53-70, 1999. Mollah, M. Yousuf A., Schennach R., Parga Jose R. and Cocke David L., “Electrocoagulation (EC)—science and applications”, Journal of Hazardous Materials, Vol. 84, PP. 29-41, 2001. Mollah, M. Yousuf A., Morkovsky, P., Gomes, J. A.G., Kesmez, M., Pargad, J. and Cocke D. L., “Fundamentals, present and future perspectives of electrocoagulation”, Journal of Hazardous Materials, Vol.114, PP. 199-210, 2004. Nochaiya, T., Wongkeo, W. and Chaipanich, A., “Utilization of fly ash with silica fume and properties of Portland cement–fly ash–silica fume concrete”, Fuel, Vol. 89, PP. 768-774, 2010. Park, Y. J. and Heob, J., “Vitrification of fly ash from municipal solid waste incinerator”, Journal of Hazardous Materials, Vol 91, PP. 83-93, 2002. Querol, X., Fernhndez-Turiel, J. L. and Lopez-Soler, A., “Trace elements in coal and their behavior during combustion in a large power station”, Fuel, Vol 74 No. 3, pp. 331-343, 1995. Quina, M. J., Bordado, J. C. and Quinta-Ferreira R. M., “Treatment and use of air pollution control residues from MSW incineration: An overview”, Waste Management, Vol 28, PP. 2097-2121, 2008. Saikia, N., Kato, S. and Kojima, T., “Compositions and leaching behaviours of combustion residues”, Fuel, Vol. 85, PP. 264-271, 2006. Shi, H. S. and Kan, L. L., “Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete”, Journal of Hazardous Materials, Vol. 164, PP. 750-754, 2009. Sloot, H. A., Kosson, D. S. and Hjelmar, O., “Characteristics, treatment and utilization of residues from municipal waste incineration”, Waste Management, Vol. 21, PP. 753-765, 2001. Snoeyink, V. L. and Jenkins, D., “Water chemistry”, 1980. Suryavanshi, A. K., Scantlebury, J. D. and Lyon, S. B., “Mechanism of Friedel’s salt formation in cement rich in tri-calcium aluminate”,Cement and Concrete Research, Vol. 26, PP.717-727, 1996 Tessier, A., Campbell, P. G. C. and Bisson, M., “Sequential extraction procedure for the speciation of particulate trace metals”, Analytical Chemistry, Vol. 51, pp. 544-551, 1979. Thipse, S. S., Schoenitz, M. and Dreizin E. L.“Morphology and composition of the fly ash particles produced in incineration of municipal solid waste”, Fuel Processing Technology, Vol. 75, PP. 173-184, 2002. Trompette, J.L., Vergnes, H. and Coufort C., “Enhanced electrocoagulation efficiency of lyophobic colloids in the presence of ammonium electrolytes”, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 315, PP. 66–73, 2008. Visa, M., Bogatu, C. and Duta, A., “Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash”, Applied Surface Science, 2010. Wang, K. S., Chiang K. Y., Lin, K. L. and Sun C. J., “Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash”, Hydrometallurgy, Vol. 62, PP. 73-81, 2001. Wang, K. S., Lin, K. L. and Lee, C. H., “Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction”, Journal of Hazardous Materials, Vol. 162, PP. 338-343, 2009. Wiles, C. C., “Municipal solid waste combustion ash:state-of-the-knowledge”, Journal of Hazardous Materials, Vol. 47, PP. 325-344, 1996. Yang C. C., “Recovery of heavy metals from spent Ni–Cd batteries by a potentiostatic electrodeposition technique”, Journal of Power Sources, Vol. 115, PP. 352-359, 2003. Yang, C. L., “Electrochemical coagulation for oily water demulsification”, Separation and Purification Technology, Vol. 54, PP. 388-395, 2007. Yang, G. and Tsai C., “A study on heavy metal extractability and subsequent recovery by electrolysis for a municipal incinerator fly ash.” Journal of Hazardous Materials, Vol. 58, PP. 103-120, 1998. Yvon, J., Antenucci, D., Jdid E. L., Lorenzi, G., Dutre, V., Leclerq, D., Nielsen, P. and Veschkens, M., “Long-term stability in landfills of Municipal Solid Waste Incineration fly ashes solidified/stabilized by hydraulic binders” Journal of Geochemical Exploration, Vol. 90,PP. 143-155, 2006. Zhu, F., Takaoka, M., Oshita, K., Kitajima, Y., Inada, Y., Morisawa, S. and Tsuno, H., “Chlorides behavior in raw fly ash washing experiments”, Journal of Hazardous Materials, 2010.
摘要: 本研究乃比較水洗方式(L/S=20/1)溶出大量鹽類以降低重金屬之含量及溶出濃度,以及電化學方式處理MSWI飛灰,以鋁為陽極(稱A組實驗,固/液相樣品稱A灰/液)或以氧化銥為陽極(稱B組實驗,固/液相樣品稱B灰/液),陰極皆使用不鏽鋼,再分別通以直流電進行電化學實驗,期許水洗、電化學處理後之固相飛灰能通過TCLP溶出標準而無害化,電化學實驗所產生有害廢液再以電化學方式處理,同時回收使用於下一批次飛灰電化學實驗,期使第一與第二批次處理後固相飛灰之危害性降低,同時能夠達成減少水資源浪費目標。 研究結果顯示,原灰之鉛溶出濃度高達48.3 mg/L,屬於有害事業廢棄物。單純水洗一次及二次後分別降至13.6及8.73 mg/L,但仍無法通過法規標準(5.0 mg/L)。電化學處理飛灰實驗結果顯示, A、B灰鉛之溶出濃度分別降至1.01及8.67 mg/L,其中A灰之鉛溶出濃度可通過TCLP法規標準。而伴隨電化學處理飛灰A組實驗產生之廢液(A液前)鉛濃度高達26.6 mg/L,再經電化學處理後,當陽極使用氧化銥時,水中鉛濃度降至4.55 mg/L;而選擇鋁為陽極時,更可使處理後之廢液(A液後)鉛濃度降至0.45 mg/L,因此取後者處理後之廢液作回收液於第二批次使用。第二批次乃以第一批次處理後廢液回收取代純水(第二批次固液相樣品稱A回灰/液)。實驗結果顯示,A回灰之鉛TCLP溶出濃度為0.72 mg/L,A回液經電化學處理前後,鉛濃度由為23.1降至0.86 mg/L,實驗結果與第一批次(26.6→0.45 mg/L)相當,顯示妥善處理後之廢液回收重複使用是可行的。 將上述實驗後之固相樣品進行SEM-EDS及XRD分析,發現 A灰及A回灰操作過程中因鋁離子釋出,與飛灰中大量鈣、氯等元素結合成3CaO.Al2O3.CaCl2.10H2O(Friedel’s salt)之結晶相,文獻指出Friedel’s salt為一狀態穩定且難溶於水之聚合物,可吸附重金屬使重金屬不輕易溶出,推論此乃造成A灰及A回灰之重金屬鉛TCLP溶出濃度較低而可符合法規標準的主要原因。
This research utilizes water washing (L/S ratio 20/1) to extract the massive salts and to reduce the contents of heavy metal in MSWI (Municipal Solid Waste Incinerator) fly ash, as well as employs the electrochemical processes to stablize MSWI fly ash. In the electrochemical experiment, either one aluminum rod (called group A-test) or iridium oxide rod was selected as the anode (called group B-test), and the cathode was always stainless steel plate, then carried on the electrochemical process through the direct current. It is expected that after washing or electrochemical treatment, the solid phase of fly ash can pass the TCLP test. By using the electrochemical treatment, the process also produces hazardous leachate which will be treated by electrochemical method again, and then recycles the treated and filtered leachate to be used in the next batch. After the first or the second batch experiments of processing, the hazardous characteristic of fly ash was thoroughly investigated in this research. Meanwhile, it is also the goal to reduce the water to be wasted. The results show that, according to the TCLP test, Pb concentration in the original fly ash was as high as 48.3 mg/L; therefore it belongs to a hazardous industrial waste. After water washing the fly ash only once or twice, the TCLP concentrations of Pb were down to 13.6 and 8.73 mg/L, respectively, but still unable to meet with the TCLP standard value 5.0 mg/L. The results of the first batch electrochemical experiment show that TCLP tested Pb concentration of group A-test fly ash (called FA-Al-W1) and B-test fly ash (called FA-Ir-W1) can reduce to 1.01 and 8.67 mg/L, respectively. The former group A-test result can pass the TCLP test in particular. But the following group A-test would produce a great deal of leachate, in which the Pb concentration was as high as 26.6 mg/L in the leachate (called Al-W1-1). After electrochemical treatment of the leachate, when using the iridium oxide rod as the anode, the Pb concentration in the leachate (called Al-Ir-W1-2) was down to 4.55 mg/L. In contrast, when using the aluminum rod as the anode, the Pb concentration dropped to 0.45 mg/L in the leachate (called Al-W1-2), which led to the use of aluminum rod as the anode in the next batch to treat the leachate for recycling. The results show TCLP concentration of Pb of fly ash (called FA-Al-W2) after the second batch experiment is 0.72 mg/L. On the other hand, before and after the second batch of electrochemical treatment of the leachates, the Pb concentration was reduced from 23.1 mg/L (Al-W2-1) down to 0.86 mg/L (Al-W2-2), which is comparable to the concentration in the first batch (Al-W1-1 26.6 declined to Al-W1-2 0.45 mg/L) experiment. Above all, after a proper treatment, the treated leachate can be recycled as fresh water to reduce the consumption. After all experiments were over, we analyze all solid samples by using the SEM-EDS and XRD. Because aluminum ions were released during the electrochemical treatment, and these aluminum ions can combine with calcium and chlorine ion from fly ash to form Friedel's salt (3CaO.Al2O3.CaCl2.10H2O). The literature pointed out that Friedel's salt is a stable state polymer and it is insoluble in water and can also adsorb some heavy metals firmly. This is the main reason for the FA-Al-W1 and FA-Al-W2 samples could be lowered in Pb concentration and passed the regulation through TCLP test.
URI: http://hdl.handle.net/11455/5723
其他識別: U0005-0107201012492600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0107201012492600
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.