請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5728
標題: 以電漿輔助沉積法複合 奈米碳管/二氧化鈦材料光降解氣相丙酮之研究
Photocatalytic-degradation of acetone vapor with CNT/TiO2 nanocomposites fabricated by APPENS
作者: 曾婉婷
Zeng, Wan-Ting
關鍵字: nanocomposites
常溫常壓電漿輔助化學氣相沉積法
CNT/TiO2
APPENS
photo-degradation
奈米複合材料
丙酮
出版社: 環境工程學系所
引用: 英文部分 An, G., Ma, W., Sun, Z., Liu, Z., Han, B., Miao, S., Miao, Z., Ding, K., “Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation,” Carbon,vol 45,pp.1795-1801(2007) Ao, C. H., Lee, S. C., Mak, C.L., Chan, L.Y. “Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: promotion versus inhibition effect of NO” Applied Catalysis B: Environmenta , Vol. 42, pp.119-129 (2003). Bai, H. L., Chen, C. C., Lin, C. H., Den W., Chang, C. L., “Monodisperse Nanoparticle Synthesis by an Atmospheric Pressure Plasma Process: an Example of a Visible Light Photocatalyst,” Industrial and Engineering Chemistry Research, Vol. 43, pp. 7200-7203 (2004) Battiston, G. A., Gerbasi, R., Gregori, A., Porchia, M., Cattarin, S., Rizzi, G. A., “PECVD of Amorphous TiO2 Thin Films: Effect of Growth Temperature and Plasma Gas Composition,” Thin Solid Films, Vol. 371, pp. 126-131 (2000). Bessergenev, V. G., Pereira, R. J. F., Mateus, M. C., Khmelinskii I. V., Vasconcelos, D. A., “Study of Physical and Photocatalytic Properties of Titanium Dioxide Thin Films Prepared from Complex Precursors by Chemical Vapor Deposition,” Thin Solid Films, Vol. 503, pp. 29-39 (2006). Byrappa, K., Dayananda, A.S., Sajan, C.p., Basavalingu, B., Shayan, M.B., Soga, K., Yoshimura, M.,” Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications” J Mater Sci,. Vol.43: p.2348–2355 (2008). Chen, L. C., Ho, Y. C., Guo, W. S., Huang C. M., Pan, T. C., “Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes.” Electrochimica Acta, Vol 54, pp.3884-1891 (2009). Chen, M. L., Zhang, F. J., Oh, W. C., “Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composite derived from MWCNTs and titanium sources.” New Carbon Materials, Vol 24, pp.159-166 (2009). Duminica, F. D., Maury, F., Senocq, F., “Atmospheric Pressure MOCVD of TiO2 Thin Films Using Various Reactive Gas Mixtures,” Surface and Coatings Echnology, Vol. 188, pp. 255-259 (2004). Fukahori S., Ichiura H., Kitaoka T., Tanaka H., “photo catalytic decomposition of Bisphenol A in water using composite TiO2-zeolite preparaed by a papermaking technique.” Envirnomental Science and Technology, Vol.37(5), pp.1048-1051. (2003) Gu, Z. R., Chen, A.P., Dai, Z. M., and Gu, H.C., “Mechanism of mutual enhancing ability of purification between photocatalysis agent and active carbon on air purification sieve.” Chemistry and Industry of Forest Products, Vol. 20(1), pp.6-10 (2000) Hou, H., Miyafuji, H., Kawamoto, H., Saka, S.,” Supercritically treated TiO2-activated carbon composites for cleaning ammonia.” J Wood Sci, Vol.52: p.533-538 (2006). Hung, C. H., Marinas, B. J.,”Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films.” Env. Sci. & Tech, Vol.31, p.1440 (1997). Ichiura H., Kitaoka T., and Tanaka H., “Removal of indoor pollutants under UV irradiation by a composite TiO2-Zeolite sheet preparaed using a papermaling technique” Chemosphere Vol. 50, pp.7-83 (2003) Iijima, S., “Helical microtubules of graphitic carbon” Nature, 354: pp. 56. (1991). Lee, S. Y., Parka, J., Jooa, H., ”Visible light-sensitized photocatalyst immobilized on beads by CVD in a fluidizing bed.” Solar Energy Materials & Solar Cells Vol.90: p.1905–1914 (2006). Li, Y. and Ishigaki, T. “Thermodynamic Analysis of Nucleation of Anatase and Rutile from TiO2 Melt,” Journal of Crystal Growth, vol. 242, pp. 511-516 (2002). Liu, S., Yang., L., Xu., S., Luo., S., Cai, Q., “Photocatalytic activities of C-N-doped TiO2 nanotube array/carbon nanorod composite.” Electrochemistry Communication, Vol. 11 pp.1748-1751, (2009). Liu, S.X., Chen1, X.Y., Chen1, X..,” A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method.” Journal of Hazardous Materials, Vol.143: p.257–263 (2007). Matos, J., Laine, J., Herrmann, J.-M., “Effect of the type of active carbon on the photocatalytic degradation of aqueous orangic pollutants by UV-irradiated titania.” Journal of Catalysis, Vol 200, pp.10-20 (2001). Music, S., “Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure.” Materials Science and Engineering: B, Vol.47, p.33 (1997). Prylutskyy, Y. I., Durov, S. S., Ogloblya, O. V., Buzaneva, E. V., Scharff, P. “Molecular dynamics simulation of mechanical, vibrational andelectronicproperties of carbon nanotubes” Computational Materials Science, Vol.17: p.352-355 (2000). Song, Z., Hrbek, J., Osgood, R.,” Formation of TiO2 Nano-particles by Reactive-Layer-Assisted Deposition and Characterization by XPS and STM ”Nano lett,vol 5(7),pp.1327-32 Takafumi, S., Manabu, S., Kikno, O., “Evaluation of sintering ofnanometer-sized titania using aerosol method.” Aerosol Sci. & Tech,. Vol.23: p.183-200 (1995). Tsumura T., Kojitani N., Umenura H., Toyoda M., Inagaki M., “Compsites between photoactive anatase-type TiO2 and adsorptive carbon” Applied Surface Science Vol.196, pp.429-436. (2002) Valentine, C. D., Pacchioni, G., Selloni, A., Livraghi S., Giamello, E., “Characterization of Paramagnetic Species in N-doped TiO2 Powders by EPR Spectroscopy and DFT Calculations.” Journal of Physical Chemistry B, Vol. 109, pp. 11414-11419 (2005). Vorontsov, A. V., Savinov, E.N., Barannik, G. B., Troitsky, V. N., Parmon, V. N., “Quantitative studies on the heterogenous gas-phase photooxidation of CO and simple VOCs by air over TiO2.” Catalysis Today, vol. 39, pp.207-218,(1997). Wang, W., Serp, P., Kalck, P., Silva, C.G., Faria, J.L., ”Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications.” Materials Research Bulletin, Vol. 43: p.958-967 (2008). Yamashita, H., Harada, M., Tanil, A., ”Preparation of efficient titanium oxide photocatalysts by an ionized cluster beam (ICB) method and their photocatalytic reactivities for the purificationof water.” Catalysis Today, Vol.63: p.63-69 (2000). Yamashita, H., Harada, M., Tanil, A., ”Preparation of efficient titanium oxide photocatalysts by an ionized cluster beam (ICB) method and their photocatalytic reactivities for the purificationof water.” Catalysis Today, Vol.63: p.63-69 (2000). Yu, Y., Yu, J. C., Yu, J.G., Kwok, Y.-C., Che, Y.-K., Zhao, J.-C., Lu, D., Ge, W.-K.,Wong, P.-K., ”Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes.” Applied Catalysis A, Vol.289: p.186–196 (2005). Yu, Y., Yu, J.C., Chan, C.Y., Che, Y.K., Zhao, J.C., Ding, L., Ge, W.K.,Wong, P.K., ”Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye.” Applied Catalysis, Vol.61: p. 1 (2005). Zhang X., Zhou Mi., Lei L., “Preparation of an Ag–TiO2 photocatalyst coated on activated carbon by MOCVD.” Materials Chemistry and Physics,. Vol.91: p. 73–79 (2005). Zhao, J., Buldum, A., Han, J., Lu, J. P., "Gas molecule adsorption in carbon nanotubes and nanotube bundles." Nanotechnology, Vol.13, p.195 (2002). Zoppi, R. A., Trasferetti, B. C., Davanzo, C. U., “Sol-Gel Titanium Dioxide Thin Films on Platinum Substrates: Preparation and Characterization,” Journal of Electroanalytical Chemistry, Vol. 544, pp. 47-57 (2003). 中文部分 白崢鈺, 謝哲隆. “複合奈米金屬銀光觸媒結合UVA 及UVC 光催化氧化甲苯反應動力.” 第四屆環境保護與奈米科技學術研討會. 民國94年 巫玉娟, ”活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究.” 國立中山大學環境工程研究所碩士論文. 民國95年. 巫菁芳, 林家欣, 白曛綾. “光觸媒二氧化鈦覆載銀擔體高分散性複合物處理丙酮之研究.” 第四屆環境保護與奈米科技學術研討會. 民國96年 李凱博, “以電漿激發化學氣相沉積法製備二氧化鈦觸媒薄膜之甲醇光催化反應研究.”國立中興大學化學工程學系碩士論文.民國95年 許元和, ”探討不同高壓氮氣鍛燒製備下二氧化鈦光觸媒特性之研究.” 國立中興大學環境工程所碩士論文. 民國97年. 林志遠, ”利用常壓電漿和高壓鍛燒法製備含氮摻雜二氧化鈦光觸媒降解異丙醇之研究.” 國立中興大學環境工程所碩士論文. 民國96年. 林亮毅, 白曛綾. “以Ti-MCM-41與V-Ti-MCM-41分子篩光觸媒同時處理VOCs 及NOx 之研究.”國立交通大學環境工程所碩士論文. 民國97年 彭依偉, 羅卓卿, 王大昌, 李宛樺, 袁中新, 李家偉, 洪崇軒. “結合奈米光觸媒與活性碳紙纖濾網處理室內揮發性有機污染物.” 第二十四屆空氣污染控制技術研討會. 民國96年 黃國軒, “利用TiO2結合奈米碳管降解偶氮系染料之研究.” 國立雲林科技大學. 民國95年. 葉益華, “以化學氣相沉積法製備CNTs/TiO2複合材料去除氣相丙酮之研究.”國立中興大學化學工程學系碩士論文.民國98年 蔡逸傑, “多壁奈米碳管結合光觸媒之複合材料去除氣相丙酮污染物之研究”國立中興大學化學工程學系碩士論文.民國96年 羅卓卿, 袁中新, 洪崇軒. “利用不同光源在TiO2及ZrO2光觸媒下進行光催化還原二氧化碳之研究.” 第二十四屆空氣污染控制技術研討會. 民國96年.
摘要: 本研究目的以常溫常壓電漿輔助化學氣相沉積法(APPENS, atmospheric pressure plasma enhanced chemical vapor deposition)製備CNT/TiO2奈米複合材料,並尋找最佳製備條件,針對丙酮進行觸媒催化分解處理技術應用之潛能。研究利用電壓為12、13、15kV製備CNT/TiO2,將CNT/TiO2的CNTs含量在控制30%條件下進行光降解實驗,反應速率常數分別為0.86、0.60、0.42 (min-1 g-1)。經X光繞射分析顯示,CNT/TiO2主要晶相為銳鈦礦結構,且粒徑約介於18-25nm之間。由SEM圖中發現,CNT/TiO2中TiO2顆粒粒徑與XRD求出的粒徑相符,並且均勻分布於CNTs管壁上。以12kV製備不同CNTs含量的CNT/TiO2,10%-CNT/TiO2的反應速率為1.20min-1 g-1,為最佳之CNTs含量。本研究所製備的CNT/TiO2與商用光觸媒P25及sol-gel法比較,其去除能力佳,且10%-CNT/TiO2的反應速率約為P25的兩倍。不同環境溫度比較之下,反應速率常數隨溫度增加,由連續式實驗所求得之丙酮轉化率亦有相同趨勢。針對不同濕度測試結果,增加環境濕度,反應速率常數與丙酮轉化率有降低的趨勢。綜合上述結果,降低電漿電壓、將CNTs含量控制在10%、且增加環境溫度可增加CNT/TiO2光降解丙酮的效率,而實驗證實結合CNTs與TiO2能提昇去除效率及光降解丙酮的反應速率。
CNT/TiO2 nanocomposites were prepared by atmospheric pressure plasma enhanced chemical vapor deposition (APPENS) to study photo-degradation of Acetone vapor. With different plasma voltages of 12, 13 and 15 kV, the rate constants of Acetone degradation are 0.86, 0.60 and 0.42 (min-1 g-1), respectively. It's shown that a decrease in the voltage results in an increase of the rate constant. The X-ray analysis shows that the TiO2 on CNTs surface is anatase, and in further comparison with the scanning electron micrographs reveals nanoparticle size ranging from 18 to 25 nm. Use of 12kV plasma voltage can obtain smaller particles, so the rate constant is better. Preparing different CNTs content, 0, 10, 20, 30%-CNT/TiO2, the 10%-CNT/TiO2 rate constant reached 1.20min-1 g-1. Compare to the P25 and the sol-gel method composite, the rate constant is higher than in both cases by 2 and 1.5 times. This indicates that CNTs can promote the removal efficiency significantly. For the temperature effect results, the photo-degradation rate constant increases with temperature. And for the continuously experiment, which have same trend with the bath experiment via temperature and relative humidity.
URI: http://hdl.handle.net/11455/5728
其他識別: U0005-0408201015233600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0408201015233600
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。