Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5730
標題: 應用於TFT-LCD 光罩製程之電子級硫酸回收研究
A study on the recovery of electronic grade sulfuric acid from a TFT-LCD photomask process
作者: 林偉立
Lin, Wei-Li
關鍵字: TFT-LCD photomask
TFT-LCD光罩
electronic grade sulfuric acid
recovery
activated carbon
adsorption
metal ions
電子級硫酸
回收
活性碳
吸附
金屬離子
出版社: 環境工程學系所
引用: 中文部分 1.Ramsden, E. N. 1997. 化學探究(中冊)無機化學(江琳才、蔣雄),145-152,香港:導師出版社。 2.江旭禎,1990,感應偶合電漿質譜儀,CHEMISTRY(THE CHINESE CHEM SOC., TAIWAN CHINA),Vol. 48. No. 1 pp 50-56。 3.林冠州,2004,TFT-LCD面板廠商對供應商選擇之研究,碩士論文,台南:國立成功大學企業管理研究所。 4.洪世章、馬玫生, 2004,我國TFT-LCD產業之技術優勢分析,科技發展政策報導SR9312 (2004),993-994。 5.袁鶴齡,2006,我國TFT-LCD產業發展模式之探討,科技發展政策報導SR9502 (2006),122-127。 6.翁瑞麟,2003,微波輔助產生揮發性基質化合物結合感應偶合電漿質譜儀於硒及鍺粉末和矽及石英中微量不純物分析之應用,碩士論文,高雄:國立中山大學化學研究所。 7.陳美東、杜石然、金秋鵬、范楚玉,1992,簡明中國科學技術史話,初版,223-224,台北:明文。 8.盧慶儒,2007,高度精細化和大型化TFT-LCD光罩的最新趨勢,網址:http://blog.sina.com.cn/s/blog_4ba50e11010007un.html。 9.謝福環,2007,特殊有機廢溶劑純化再利用之研究,在職專班碩士論文,桃園:國立中央大學環境工程研究所。 英文部份 1.Ahmadpour, A., D.D. Do. 1996. The preparation of active carbons from coal by chemical and physical activation. Carbon 34, 471–479. 2.Ahmedna, M., W.E. Marshall, R.M. Rao. 2000. Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresource Technology 71, 113–123. 3.Babel, S., T.A. Kurniawan. 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials 97, 219–243. 4.Bailey, A., P. Arthur, P. Maggs. 1971. In. British Patent 1301101. 5.Bansal, R.C., Donnet, J.B., Stoeckli, F., 1988. In: Active Carbon. Marcel Dekker, New York. 6.Bansode, R.R., J.N. Losso, W.E. Marshall, R.M. Rao, R.J. Potier. 2003. Adsorption of metal ions by pecan shell-based granular activated carbons, Bioresource Technology 89, 115-119. 7.Barkat, M., D. Nibou, S. Chegrouche, Mellah A. 2009. Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions. Chemical Engineering and Process 48, 38-47. 8.Chuah, T.G., A. Jumasiah, I. Azni, S. Katayon, S.Y. Thomas Choong. 2005. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination 175, 305–316. 9.Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology 97, 1061–1085. 10.Dabrowski, A. 2001. Adsorption—from theory to practice. Advances in Colloid and Interface Science 93, 135–224. 11.Derbyshire, F., M. Jagtoyen, R. Andrews, A. Rao, I. Martin-Gullon, E. Grulke. 2001. Carbon Materials in Environmental Applications. Marcel Decker, New York. 12.Dias, J. M., M. Alvim-Ferraz, M.F. Almeida, J. Rivera-Utrilla, M. Sanchez-Polo. 2007. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review, Journal of Environmental Management 85, 833-846. 13.Guo, J., A.C. Lua. 1999. Textural and chemical characterisations of activated carbon prepared from oil-palm stone with H2SO4 and KOH impregnation, Microporous and Mesoporous Materials 32, 111–117. 14.Guo, J., W.S. Xu, Y.L. Chena, A.C. Lua. 2005. Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4, Journal of Colloid and Interface Science 281, 285–290. 15.Gupta, V.K., A. Mittal, R. Jain, M. Mathur, S. Sikarwar. 2006. Adsorption of safranin-T from wastewater using waste materials—activated carbon and activated rice husks. Journal of Colloid and Interface Science 303, 80–86. 16.Gupta, V.K., S.K. Srivastava, D. Mohan. 1997a. Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag. Industrial and Engineering Chemical Research 36, 2207–2218. 17.Gupta, V.K., S.K. Srivastava, D. Mohan, S. Sharma. 1997b. Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Management 17, 517–522. 18.Hagimori, K., Y. Abe, T. Kanke. 1994. Method of decomposing hydrogen peroxide. United States Patient 534872. 19.Huang, C. P. 1978. Chemical interactions between inorganics and activated carbon. In: Cheremisinoff, P.N., Ellerbusch, F. (Eds.), Carbon Adsorption Handbook. Ann Arbor Science. 20.Jarvis, K. E., A. L. Gray, and R. S. Houk. 1992. Handbook of Inductively Coupled Plasma Mass Spectrometry. Chapman and Hall: New York. 21.Kantarli, I. C., J. Yanik. 2010. Activated carbon from leather shaving wastes and its application in removal of toxic materials, Journal of Hazardous Materials 179, 348-356. 22.Karthikeyan, T., S. Rajgopal, L.R. Miranda. 2005. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials B124, 192-199. 23.Kasaoka, S., Y. Sakata, E. Tanaka, R. Naitoh. 1989. Preparation of activated fibrous carbon from phenolic fabric and its molecular-sieve properties. International Chemical Engineering 29, 101–114. 24.Khezami, L., R. Capart. 2005. Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies, Journal of Hazardous Materials B123, 223-231. 25.Kobya, M., E. Demirbas, E. Senturk, M. Ince. 2005. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour Technol. 2005 Sep;96(13):1518-21. 26.Koyama, Y. 1997. Sulfuric acid recovery and purification technology, Ultra Clean Technology, 9, 3:159~162. 27.Lach, J., E. Okoniewska, E. Neczaj, M. Kacprzak. 2007. Removal of Cr(III) cations and Cr(VI) anions on activated carbons oxidized by CO2, Desalination 206, 259-269. 28.Li, L., P.A. Quinlivan, D.R.U. Knappe. 2002. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40, 2085–2100. 29.Lopez-Ramon, V., C. Moreno-Castilla, J. Rivera-Utrilla, L.R. Radovic. 2002. Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons. Carbon 41, 2020–2022. 30.Macia -Agullo, J. A., B. C. Moore, D. Cazorla-Amoros, A. Linares-Solano. 2004. Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation. Carbon 42, 1367–1370. 31.Meidl, J.A. 1997. Responding to changing conditions: how powdered activated carbon systems can provide the operational flexibility necessary to treat contaminated groundwater and industrial wastes. Carbon 35, 1207–1216. 32.Moreno-Castilla, C., J. Rivera-Utrilla. 2001. Carbon materials as adsorbents for the removal of pollutants from the aqueous phase. Materials Research Society Bulletin 26, 890–894. 33.Mohammadi, S. Z., M. A. Karima, D. Afzali, F. Mansouri. 2010. Removal of Pb(II) from aqueous solutions using activated carbon from Sea-buckthorn stones by chemical activation. Desalination, doi:10.1016/j.desal.2010.05.048. 34.Moreno-Castilla, C. 2004. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42, 83–94. 35.Natale, F. D., A. Lancia, A. Molino, D. Musmarra. 2007. Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char, Journal of Hazardous Materials 145, 381-390. 36.Ogata, H., N. Tanaka. 1998. Reduction of Waste in Semiconductor Manufacturing Plant(Sulfuric Acid Recycling Technology), January 1998, Oki Technical Review 160 Vol. 63. 37.Olesik, J. W. 1996. Fundamental Research in ICP-OES and ICPMS. Analytical Chemistry. 68(Aug 1):469A-474A. 38.Pastor, A.C., F. Rodriguez-Reinoso, H. Marsh, M.A. Martinez. 1999. Preparation of activated carbon cloths from viscous rayon. Part I. Carbonization procedures. Carbon 37, 1275–1283. 39.Radovic, L.R., C. Moreno-Castilla, J. Rivera-Utrilla. 2000. Carbon materials as adsorbents in aqueous solutions. Marcel Dekker, New York. 40.Ramesh, A., D.J. Lee, J.W.C. Wong. 2005. Adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents: a review. Journal of the Chinese Institute of Chemical Engineers 36, 203–222. 41.Rivera-Utrilla, J., M. Sanchez-Polo. 2003. Adsorption of Cr(III) on ozonised activated carbon. Importance of C[pi]—cation interactions. Water Research 37, 3335–3340. 42.Rodrigues-Reinoso, F. 1997. Introduction to Carbon Technologies. Publicaciones de la Universidad de Alicante, Spain (Chapter 2). 43.Ros, A., M.A. Lillo-Rodenas, E. Fuente, M. A. Montes-Moran, M.J. Martin, A. Linares-Solano. 2006. High surface area materials prepared from sewage sludge-based precursors. Chemosphere. 65, 132-140. 44.Sanchez-Polo, M., J. Rivera-Utrilla. 2002. Adsorbent–adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons. Environmental Science and Technology 36, 3850–3854. 45.Srivastava, S.K., V.K. Gupta, D. Mohan, N. Pant. 1993. Removal of COD from reclaimed rubber factory effluents by using the activated carbon (developed from fertilizer waste material) and activated slag (Developed from blast furnace waste material)—a case study. Fresenius Environmental Bulletin 2, 394–401. 46.Srivastava, S., V. Gupta, D. Mohan. 1996. Kinetic parameters for the removal of lead and chromium from wastewater using activated carbon developed from fertilizer waste material. Environmental Modeling and Assessment 1, 281–290. 47.Tolg, G. and P. Tschopel. 1987. Power of detection and accuracy in elemental trace anlysis. Analytical Sciences, Vol. 3, 199-208. 48.Uysal, M., I. Ar. 2007. Removal of Cr(VI) from industrial wastewaters by adsorption Part I: Determination of optimum conditions, Journal of Hazardous Materials 149, 482-491. 49.Valix, M., W.H. Cheung, K. Zhang. 2006. Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters, Journal of Hazardous Materials B135, 395-405. 50.Wang, Y. H., S.H. Lin, R.S. Juang. 2003. Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. Journal of Hazardous Materials 102, 291–302. 51.Wu, Y. 2008. Behavior of chromium and arsenic on activated carbon, J. Hazard. Mater, doi:10.1016/j.jhazmat.2008.02.059. 52.Yu, J. J., S.Y. Chou. 2000. Contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption. Chemosphere 41, 371–378. 網頁資料 1.BASF. 2010. Sulfuric Acid. Available at: http://www.basf.com/group /corporate/en/. Accessed 10 March 2010. 2.Chemviron Carbon. 2010. Activated Carbon Cloth. Available at:http://www.chemvironcarbon.com/en/. Accessed 8 July 2010. 3.DisplaySearch,2009,網址: http://www.displaysearch.com.tw/,上網日期:2009-12-04。 4.Kvech, S. 2000. Instrument Description and Theory. ICP-MS. Available at: http://www.cee.vt.edu/ewr/environmental/teach/smprimer /icpms/icpms.htm. Accessed 30 December 2009. 5.PKLT,2006,認識光罩,台中:弘榮光罩股份有限公司,網址:http://www.pklt.com.tw/chinese/a1_about.html。上網日期:2009-11-25。 6.PKLT,2006,製造TFT LCD Mask,台中:弘榮光罩股份有限公司,網址:http://www.pklt.com.tw/chinese/b4_maskproc.html,上網日期:2009-11-25。 7.SIGMA-ALDRICH. 2009. Activated Carbon. Available at: http://www.sigmaaldrich.com/chemistry/aldrich-chemistry/tech-bulletins/al-143/activated-carbon.html. Accessed 26 December 2009. 8.Ward, J. W. 1995. Topsoe`s Wet gas Sulfuric Acid (WSA) process: An alternative technology for recovering refinery sulfur. EnergyStorm. Available at: http://www.energystorm.us/Topsoe_s_Wet_Gas_Sulfuric _Acid_wsa_Process_An_Alternative_Technology_For_Recovering_Refinery_Sulfur-r103261.html. Accessed 8 July 2010. 9.Winkler, J. 2009. Wet sulfuric acid process. Wikipedia. Available at: http://en.wikipedia.org/wiki/Wet_sulfuric_acid_process. Accessed 14 June 2010. 10.Worley, J. 2000. Sample Introduction. ICP-MS. Available at:http://www.cee.vt.edu/ewr/environmental/teach/smprimer/icpms/icpms. htm. Accessed 30 December 2009. 11.中國醫藥大學研究發展處貴重儀器組,2004,感應耦合電漿光譜儀ICP-MS,台中:中國醫藥大學,網址:http://www2.cmu.edu.tw/~ cmcrdc/HVIS/5-introduction/million%20facilities/CPH/ICP%20MS.htm,上網日期:2010-03-08。 12.合成工業股份有限公司,2009,網址: http://www.tophcc.com.tw/news-2.php?news_id=89,上網日期:2009-12-26。 13.台灣光電與半導體設備產業協會之資訊月報,2007,網址:http://www.tosea.org.tw/uploads/images/Article/TOSEA200810.pdf,上網日期:2010-06-11。 14.電子工程專輯,2010,網址: http://www.eettaiwan.com/ART_8800601627_480202_NT_b1cccec6.HTM,上網日期:2010-03-25。 15.環保科技園區推動計劃,2010,首頁,台北:行政院環境保護署,網址:http://ivy1.epa.gov.tw/estp/big5/index.htm,上網日期:2010-01-06。
摘要: 台灣的薄膜液晶顯示器(TFT-LCD)產業在奇美電子及友達等大廠多年來的積極擴張發展之下, 2008年底大型面板在全球的市佔率已經超過韓國而居於領先地位,相關光電化學品之年產值已達2,300億台幣。TFT-LCD製程之中所使用的濕式化學品數量非常驚人,而使用過後的這些濕式化學品一般都當作廢棄物處理,若是無法有效再利用,勢必造成嚴重的環境危害。 本研究針對中部科學園區內某家TFT-LCD光罩廠商在製程中所使用過的電子級硫酸進行回收實驗以及相關產業再利用之探討。回收實驗是將取樣自TFT-LCD光罩廠使用過之電子級硫酸與雙氧水之混合廢液,以加溫蒸餾的方式,完全去除雙氧水與純水;並利用經酸洗處理之活性碳,進行硫酸中之金屬離子的吸附,以純化為電子級硫酸。此實驗也使用FE-SEM進行活性碳表面觀察與EDS的微量元素檢測,來區別一般處理與酸洗處理之活性碳的差異性。此外利用手持式電子比重計直接量測硫酸之純度(%);最後再使用ICP-MS(感應偶合電漿質譜儀)儀器進行金屬離子量測。 實驗結果顯示,經過160℃蒸餾處理後的硫酸可回收使用於LED光電產業,經過活性碳吸附後的硫酸已接近BASF之超純電子級(UPS)硫酸規格,可供應給TFT-LCD光罩廠作為第一道清洗程序使用。將再生的電子級硫酸直接廠內回收再利用與目前當作廢棄物處理相比較,每年單廠有將近新台幣二百萬元的回收效益,若台灣的IC光罩廠與TFT-LCD光罩廠皆採用廠內回收再利用的方式處理,每年可以共同創造新台幣五千萬元以上的回收效益,同時可有效避免資源浪費及減少工業廢棄物,並提高光電產業如TFT-LCD面板與光罩廠商之競爭力。
For the global market share on thin film transistor-liquid crystal display(TFT-LCD), Taiwan has become one of the leaders mainly due to the aggressive expansion of Chimei Innolux Corporation and AU Optronics Corporation in recent years. In 2008, Taiwan's production volume surpassed South Korea and optoelectronic related chemical market has also grown up to 230 billion New Taiwan dollars. Thus, the quantity of wet chemical consumption is enormous and used chemicals are usually treated as wastes. If these spent chemical cannot be reused or recycled, they definitely will become heavy environmental burdens. This study focused on a TFT-LCD photomask company in Central Taiwan Science Park to study the feasibility on recovering and reusing the spent electronic-grade sulfuric acid. The waste mixture of spent sulfuric acid and hydrogen peroxide was distilled to remove water and hydrogen peroxide. An acid-washed activated carbon (AC) was employed to remove trace metal ions through adsorption. Field-emission scanning electron microscope was also used to observe the surface of this AC to compare the differences between general AC and acid-washed AC. A hand-held electronic specific gravity meter was used to measure the purity of the recovered sulfuric acid. Finally, an ICP-MS was used for the quantification of residual trace metals in the recovered sulfuric acid. Experimental results show that the recycled sulfuric acid by distillation at 160℃ could be used by LED optoelectronic industries. The sulfuric acid recycled by activated carbon adsorption is close to the specification of BASF ultra pure electronic (UPS) grade. It is good for the first rinsing step in TFT-LCD photomask cleaning process. The cost saved by in-plant recovering instead of disposal in this model plant is about 2 million New Taiwan dollars a year. If all the integrated circuit(IC)and TFT-LCD photomask plants in Taiwan adopt this method, more than fifty million New Taiwan dollars will be saved per year. In addition, recovery of sulfuric acid can effectively conserve natural resources, reduce industrial waste, and elevate the global competitiveness of TFT-LCD panel and photomask industries in Taiwan.
URI: http://hdl.handle.net/11455/5730
其他識別: U0005-0708201017120600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708201017120600
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.