Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5732
標題: 黃鐵礦/活性碳複合材料之製備及應用於處理三氯乙烯污染
Synthesis of pyrite/activated carbon composites for treating trichloroethylene contamination
作者: 李柏翰
Lee, Po-Han
關鍵字: Chlorinated solvents
氯化有機溶劑
sodium persulfate
sulfate radical
adsorption
oxidation-reduction
過硫酸鈉
硫酸根自由基
吸附
氧化還原
出版社: 環境工程學系所
引用: Alessi, D.S., Li, Z., 2001. Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron. Environmental Science & Technology 35, 3713-3717. Arienzo, M., 1999. Oxidzing 2,4,6-trinitrotoluene with pyrite-H2O2 suspensions. Chemosphere 39, 1629-1638. Arnold, W.A., Roberts, A.L., 2000. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environmental Science & Technology 34, 1794-1805. ATSDR, 2010. Toxicological profile for trichloroethylene. Agency for Toxic Substances & Disease Registry. Public health srvice. http://www.atsdr.cdc.gov/toxprofiles/tp19.html. Barton, S.S., Evans, M.J.B., Halliop, E., MacDonald, J.A.F., 1997. Acidic and basic sites on the surface of porous carbon. Carbon 35, 1361-1366. Behrman, E.J., Dean, D.H., 1999. Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate) in polyacrylamide gel electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications 723, 325-326. Berner, R.A., 1981. A new geochemical classification of sedimentary enviroments. Journal of Sediment Petrology 5, 359-365. Boehm, H., 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759-769. Bonnissel-Gissinger, P., Alnot, M., Ehrhardt, J.-J., Behra, P., 1998. Surface oxidation of pyrite as a function of pH. Environmental Science & Technology 32, 2839-2845. Boparai, H.K., Shea, P.J., Comfort, S.D., Snow, D.D., 2006. Dechlorinating chloroacetanilide herbicides by dithionite-treated aquifer sediment and surface soil. Environmental Science & Technology 40, 3043-3049. Boronina, T., Klabunde, K.J., 1995. Destruction of organohalides in water using metal particles: Carbon tetrachloride/water reactions with magnesium, tin, and zinc. Environmental Science & Technology 29, 1511-1517. Brunauer, S., Deming, L.S., Deming, W.E., Teller, E., 1940. On a theory of the van der waals adsorption of gases. Journal of American Chemical Society 62, 1723-1732. Burris, D.R., Campbell, T.J., S., M.V., 1995. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environmental Science & Technology 29, 2850-2855. Buxton, G.V., Barlow, S., McGowan, S., Salmon, G.A., Williams, J.E., 1999. The reaction of the radical with Fe (II) in acidic aqueous solution – a pulse radiolysis study. Physical Chemistry Chemical Physics, 3111-3116. Buxton, G.V., Malone, T.N., Salmon, G.A., 1997. Reaction of SO4-. with Fe2+, Mn2+ and Cu2+ in aqueous solution. Journal of the Chemical Society, Faraday Transactions 93, 2893-2897. Castro, C.S., Guerreiro, M.C., Goncalves, M., Oliveira, L.C.A., Anastacio, A.S., 2009a. Activated carbon/iron oxide composites for the remocal of atrazine from aqueous medium. Journal of Hazardous Materials 164, 609-614. Castro, C.S., Guerreiro, M.C., Oliveira, L.C.A., Goncalves, M., Anastacio, A.S., Nazzarro, M., 2009b. Iron oxide dispersed over activated carbon: Support influence on the oxidation of the model molecule methylene blue. Applied Catalysis A: General 367, 53-58. Chen, K.F., Kao, C.M., Wu, L.C., Surampalli, R.Y., Liang, S.H., 2009. Methyl tert-butyl ether (MTBE) Degradation by ferrous ion-activated persulfate oxidation: Feasibility and kinetics studies. Water Environment Research 81, 687-694. Choi, H., Agarwal, S., Al-Abed, S.R., 2009a. Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: Mechanistic aspects and reactive capping barrier concept. Environmental Science & Technology 43, 488-493. Choi, H., Al-Abed, S.R., Agarwal, S., 2009b. Catalytic role of palladium and relative reactivity of substituted chlorines during adsorption and treatment of PCBs on reactive activated carbon. Environmental Science & Technology 43, 7510-7515. Choi, H., Al-Abed, S.R., Agarwal, S., Dionysiou, D.D., 2008. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials 20, 3649-3655. Dimotakis, E.D., Cal, M.P., Economy, J., Rood, M.J., Larson, S.M., 1995. Chemically treated activated carbon cloths for removal of volatile organic carbons from gas streams: evidence for enhanced physical adsorption. Environmental Science & Technology 29, 1876-1880. Dries, J., Bastiaens, L., Springael, D., Agathos, S.N., Diels, L., 2004. Competition for sorption and degration of chlorinated ethenes in batch zero-valent iron systems. Environmental Science & Technology 38, 2879-2884. Duan, H., Zheng, Y.F., Dong, Y.Z., Zhang, X.G., Sun, Y.F., 2004. Pyrite (FeS2) films prepared via sol-gel hydrothermal method combined with electrophoretic deposition (EPD). Materials Research Bulletin 39, 1861-1868. Elsner, M., Schwarzenbach, R.P., Haderlein, S.R., 2004. Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environmental Science & Technology 38, 799-807. Fanning, P.E., Vannice, M.A., 1993. A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon 31, 721-730. FMC, 2001. Persulfate Technical Information, USA. Philadelphia, http://www.fmcchemicals.com/LinkClick.aspx?fileticket=y%2F0DZcxPM4w%3D&tabid=1468&mid=2563. Georgi, A., Kopinke, F.-D., 2005. Interaction of adsorption and catalytic reactions in water decontamination processes: Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Applied Catalysis B: Enviromental, 9-18. Gillham, R.W., O''Hannesin, S.F., 1994. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32, 958-967. Gotpagar, J., Grulke, E., Tsang, T., Bhattacharyya, D., 1997. Reductive dehalogenation of trichloroethylene using zero-valent iron. Environmental Progress 16, 137-143. Grittini, C., Malcomson, M., Fernando, Q., Korte, N., 1995. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology 29, 2898-2900. Hayon, E., Treinin, A., Wilf, J., 1972. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals. Journal of the American Chemical Society 94, 47-57. Hegenberger, E., Wu, N.L., Phillips, J., 1987. Evidence of strong interaction between iron particles and an activated carbon support. Journal of Physical Chemistry 91, 5067-5071. Hines, A.L., Maddox, R.N., 1985. Mass Transfer Fundamentals and Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. Hofstee, C., Walker, R.C., Dane, J.H., 1998. Infiltration and redistribution of perchloroethylene in stratified water-saturated porous media. Soil Science Society of America Journal 62, 15-23. Horng, R.S., Tseng, I.-C., 2008. Regeneration of granular activated carbon saturated with acetone and isopropyl alcohol via a recirculation process under H2O2/UV oxidation. Journal of Hazardous Materials 154, 366-372. House, D.A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews 62, 185 - 203. Hristovski, K.D., Westerhoff, P.K., Moller, T., Sylvester, P., 2009. Effect of synthesis conditions on nano-iron (hydr)oxide impregnated granulated activated carbon. Chemical Engineering Journal 146, 237-243. Huang, H.H., Lu, M.-C., Chen, J.-N., Lee, C.-T., 2003. Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons. Chemosphere 51, 935-943. Huang, K.-C., Zhao, Z., Hoag, G.E., Dahmani, A., Block, P.A., 2005. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61, 551-560. Huling, S.G., Hwang, S., 2010. Iron amendment and Fenton oxidation of MTBE-spent granular activated carbon. Water Research, 1-9. Huling, S.G., Jones, P.K., Ela, W.P., Arnold, R.G., 2005. Fenton-driven chemical regeneration of MTBE-spent GAC. Water Research 39, 2145-2153. Huling, S.G., Jones, P.K., Lee, T.R., 2007. Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon. Environmental Science & Technology 41, 4090-4096. Huling, S.G., Kan, E., Wingo, C., 2009. Fenton-driven regeneration of MTBE-spent granular activated carbon-Effects of particle size and iron amendment procedures. Applied Catalysis B: Enviromental 89, 651-658. Jean-Phillppe, C., Reckhow, D.A., 1989. Destruction of chlorination byproducts with sulfite. Environmental Science & Technology 23, 1412-1419. Jirasko, D., Problems connected with use of permeable reactive barriers for groundwater treatment. Czech Technical University, Prague, Czech Republic. http://www.cgts.cz/5e_journal_documents/jirasko.pdf. Johnson, R.L., Tratnyek, P.G., Johnson, R.O., 2008. Persulfate persistence under thermal activation conditions. Environmental Science & Technology 42, 9350-9356. Juntgen, H., 1977. New applications for carbonaceous adsorbents. Carbon 15, 273-283. Kan, E., Huling, S.G., 2009. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon. Environmental Science & Technology 43, 1493-1499. Kanaya, K., Okayama, S., 1972. Penetration and energy-loss theory of electrons in solid targets. Journal of Physics D: Applied Physics 5, 43-58. Kaneko, Y., Abe, M., Ogini, K., 1989. Adsorption characteristics of organic compounds dissolved in water on surface-improved activated carbon fibers. Colloids and Surfaces 37, 211-222. Karanfil, T., 1999. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 1. Priority pollutants. Environmental Science & Technology 33, 3217-3224. Kim, E.J., Batchelor, B., 2009. Synthesis and characterization of pyrite (FeS2) using microwave irradiation. Materials Research Bulletin 44, 1553-1558. Kim, Y.H., Carraway, E.R., 2000. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental Science & Technology 34, 2014-2017. Kimura, M., Miyamoto, I., 1994. Discovery of the activated-carbon radical AC+ and the novel oxidation-reactions comprising the AC/AC+ cycle as a catalyst in an aqueous solution. Bulletin of the Chemical Society of Japan 67, 2357-2360. Kolthoff, I.M., Medalia, A.I., Raaen, H.P., 1951. The reaction between ferrous iron and persulfate. IV. Reaction with potassium persulfate. Journal of the American Chemical Society 73, 1733-1739. Korpiel, J.A., Vidic, R.D., 1997. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environmental Science & Technology 31, 2319-2325. Kriegman-King, M.R., Reinhard, M., 1994. Transformation of carbon tetrachloride by pyrite in aqueous solution. Environmental Science & Technology 28, 692-700. Kueper, B.H., Wealthall, G.P., Smith, J.W.N., Lehame, S., Lerner, D.N., 2003. An illustrated handbook of DNAPL transport and fate in the subsurface. http://www.clu-in.org/conf/itrc/dnaplpa/dnapl_handbook_final.pdf Kwan, W.P., Voelker, B.M., 2004. Influence of electrostatics on the oxidation rates of organic compounds in heterogeneous fenton systems. Environmental Science & Technology 38, 3425-3431. Latimer, W.M., 1952. Oxidation Potentials. Prentice-Hall Englewood Cliffs Inc, New York, USA. Lee, W., Batchelor, B., 2002. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. pyrite and magnetite. Environmental Science & Technology 36, 5147-5154. Lee, Y.-C., Lo, S.-L., Chiueh, P.-T., Liou, Y.-H., Chen, M.-L., 2010. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation. Water Research 44, 886-892. Leon y Leon, C.A., Solar, J.M., Calemma, V., 1992. Evidence for the protonation of basal plane sites on carbon. Carbon 30, 797-811. Li, J., Ma, L., Li, X., Lu, C., Liu, H., 2005. Effect of nitric acid pretreatment on the properties of activated carbon and supported palladium catalysts. journal of Industrial and Engineering Chemistry 44, 5478-5482. Li, L., Quinlivan, P.A., Knappe, D.R.U., 2002. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40, 2085-2100. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55, 1213-1223. Liang, C., Huang, C.-F., Chen, Y.-J., 2008. Potential for activted persulfate degradation of BTEX contamination. Water Research 42, 4091-4100. Liang, C., Lai, M.-C., 2008. Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science 25, 1071-1077. Liang, C., Liang, C.-P., Chen, C.-C., 2009a. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. Journal of Contaminant Hydrology 106, 173-182. Liang, C., Lin, Y.-T., Shih, W.-H., 2009b. Persulfate regeneration of trichloroethylene spent activated carbon. journal of Hazardous Materials 168, 187-192. Liang, C., Wang, Z.-S., Bruell, C.J., 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66, 106-113. Liang, C.J., Bruell, C.J., Marley, M.C., Sperry, K.L., 2003. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane ( TCA ) in aqueous systems and soil slurries. Soil & Sediment Contamination 12, 207-228. Liang, X., Philp, R.P., Butler, E.C., 2009c. Kinetic and isotope analyses of tetrachloroethylene and trichloroethylene degradation by model Fe(II)-bearing minerals. Chemosphere 75, 63-69. Liu, W., Vidic, R.D., 2000. Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercurt vapors. Environmental Science & Technology 34, 483-488. Ludwig, R.D., Su, C., Lee, T.R., Wilkin, R.T., Acree, S.D., Ross, R.R., Keeley, A., 2007. In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation. Environmental Science & Technology 41, 5299-5305. Maccrehan, W.A., Jensen, J.S., Helz, G.R., 1998. Detection of sewage organic chlorination products that are resistant to dechlorination with sulfite. Environmental Science & Technology 32, 3640-3645. Mangun, C.L., Benak, K.R., Daley, M.A., Economy, J., 1999. Oxidation of activated carbon fibers: effect on pore size, surface chemistry, and adsorption properties. Chemistry of Materials, 3476-3483. Martin-Martinez, J.M., Vanice, M.A., 1991. Carbon-supported iron catalysts: Influence of support porosity and preparation techniques on crystallite size and catalytic behavior. Industrial & Engineering Chemistry Research 30, 2263-2275. Moreno-Castilla, C., Lopez-Ramon, M.V., Carrasco-Marin, F., 2000. Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38, 1995-2001. Muranaka, C.T., Julcour, C., Wilhelm, A.-M., Delmas, H., Nascimnto, C.A.O., 2010. Regeneration of activated carbon by (Photo)-Fenton oxidation. Industrial & Engineering Chemistry Research 49, 989-995. Murphy, R., Strongin, D.R., 2009. Surface reactivity of pyrite and related sulfides. Surface Science Reports 64, 1-45. Newcombe, G., Drikas, M., R., H., 1997. Influence of characterised natural organic matter on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol. Water Research 31, 1065-1073. Noh, J.S., Schwarz, J.A., 1990. Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon 28, 675-682. Pakula, M., Biniak, S., Swiatkowski, A., 1998. Chemical and electrochemical studies of interactions between iron (III) ions and an activated carbon surface. Langmuir 14, 3082-3089. Patterson, A.L., 1939. The scherrer formula for X-ray particle size determination. Physical Review 15, 978-982. Pennington, D.E., Haim, A., 1968. Stoichiometry and mechanism of the chromium (II) peroxydisulfate reaction. Journal of American Chemical Society 90, 3700-3704. Polovina, M., Babic, B., Kaluderovic, B., Dekanski, A., 1997. Surface characterization of oxidized activated carbon cloth. Carbon 35, 1047-1052. Pouchert, C.J.e., 1989. The Aldrich Library of FT-IR Spectra Vapor Phase, 1st ed. Aldrich Chemical Co.: Milwaukee, WI, 1989, 343. Pradhan, B.K., Sandle, N.K., 1999. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37, 1323-1332. Quinlivan, P.A., Li, L., Knappe, D.R.U., 2005. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Research 39, 1663-1673. Renolds, G.W., Hoff, J.T., Gillham, R.W., 1990. Sampling bias caused by materials used to monitor halocarbons in groundwater. Environmental Science & Technology 24, 135-142. Rey, A., Faraldos, M., Bahamonde, A., 2008. Role of the activated cabon surface on catalytic wet peroxide oxidation. Industrial & Engineering Chemistry Research 47, 8166-8174. Roberts, A.L., Totten, L.A., Burris, D.R., Campbell, T.J., 1996. Reductive elimination of chlorinated ethylenes by zero-valent metals. Environmental Science & Technology 30, 2654-2659. Rodriguez-Reinoso, F., 1998. The role of carbon materials in heterogeneous catalysis. Carbon 36, 159-175. Ruthven, D.M., 1984. Principles of Adsorption and Adsorption Processes. John Wiley & Sons, New York. Scherer, M.M., Richter, S., Valentine, R.L., Alvarez, P.J.J., 2000. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Environmental Science & Technology 30, 363-411. Schroth, M.H., Oostrom, M., Wietsma, T.W., Istok, J.D., 2001. In-situ oxidation of trichloroethene by permanganate: Effects on porous medium hydraulic properties. Journal of Contaminant Hydrology 50, 79-98. Shao, H., Butler, E.C., 2007. The influence of iron and sulfur mineral fractions on carbon tetrachloride transformation in model anaerobic soils and sediments. Chemosphere 68, 1807-1813. Shim, J.-W., Park, S.-J., Ryu, S.-K., 2001. Effect of modification with HNO3 and HaOH on metal adsorption by pitch-based activated carbon fibers. Carbon 39, 1635-1642. Sinha, A., Bose, P., 2009. Interaction of 2,4,6-trichlorophenol with high carbon iron filings: Reaction and sorption mechanisms Journal of Hazardous Materials 164, 301-309. Siyu, H., Xinyu, L., QingYu, L., Jun, C., 2009. Pyrite film synthesized for lithium-ion batteries. Journal of Alloys and Compounds 472, 9-12. Smestad, G., Ennaoui, A., Fiechter, S., Tributsch, H., Hofmann, W.K., Birkholz, M., 1990. Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides. Solar Energy Materials 20, 149-165. Suthersan, S.S., 1996. Remediation Engineering: Design Concepts, Lewis Publishers, Boca Raton, FL. Thiruvenkatachari, R., Vigneswaran, S., Naidu, R., 2008. Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry 14, 145-156. Toledo, L.C., Silva, A.C.B., Augusti, R., Lago, R.M., 2003. Application of Fenton''s reagnt to generate activated carbon saturated with organochloro compounds. Chemosphere 50, 1049-1054. Travina, O.A., Kozlov, Y.N., Purmal, A.P., Rodko, I.Y., 1999. Synergism of the action of the sulfite oxidation initiators, iron and peroxydisulfate ions. Russian Journal of Physical Chemistry 73, 1215-1219. Tsai, T.T., Kao, C.M., Yeh, T.Y., Lee, M.S., 2008. Chemical oxidation of chlorinated solvents in contaminated groundwater: Review Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 12, 116-126. USEPA, 1998. Permeable Reactive Barrier Technologies for Contaminant Remediation. United States Environmental Protection Agency EPA 600-R-98-125. USEPA, 2001. A Citizen''s Guide to Chemical Oxidation. United States Environmental Protection Agncy EPA 542-f-01-013. USEPA, 2006. In Situ Chemical Oxidation. United States Environmental Protection Agency EPA 600-R-06-072. Vikesland, P.J., Valentine, R.L., 2000. Reaction pathways involved in the reduction of monochloramine by ferrous iron. Environmental Science & Technology 34, 83-90. Wan, D., Wang, Y., Wang, B., Ma, C., Sun, H., Wei, L., 2003. Effects of the crystal structure on electrical and optical properties of pyrite FeS2 films prepared by thermally sulfurizing iron films. Journal of Crystal Growth 253, 230-238. Wang, C.B., Zhang, W.X., 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology 31, 2154-2156. Wang, S., Lu, G.Q., 1998. Effects of acidic treatments on the pore and surface properties of Ni catalyst supported on activated carbon. Carbon 36, 283-292. Ward, J.C., 1970. The structure and properties of some iron sulfide. Reviews of Pure and Applied Chemistry 20, 175-206. Weerasooriya, R., Dharmasena, B., 2001. Pyrite-assisted degradation of trichloroethylene (TCE). Chemosphere 42, 389-396. Welty, J.R., Wicks, C.E., Wilson, R.E., Rorrer, G.L., 2000. Fundamentals of Momentum, Heat, and Mass Transfer. John Wiley and Sons, Inc., New York, NY. Zheng, T., Zhan, J., He, J., Day, C., Lu, Y., Mcpherson, G.L., Piringer, G., John, V.T., 2008. Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation. Environmental Science & Technology 42, 4494-4499. Zhu, H., Jia, Y., Wu, X., Wang, H., 2009. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials 172, 1591-1596. Zhu, Z.H., Radovic, L.R., Lu, G.Q., 2000. Effects of acid treatments of carbon on N2O and NO reduction by carbon supported copper catalysts. Carbon 38, 451-464. 行政院環保署,毒性化學物質災害放救查詢系統(2010a) - http://www.epa.gov.tw/ch/DocList.aspx?unit=21&clsone=478&clstwo=0&clsthree=0&busin=324&path=3112。 行政院環保署,環保法規(2010b) - http://sgw.epa.gov.tw/public/07_Pollutant.asp。 吳宜蓁,「活性碳吸附及結合過硫酸鹽氧化MTBE之可行性評估」,國立中興大學環境工程學系碩士論文,台中(2010)。 財政部關稅總局統計室,中華民國台灣地區進出口貿易查詢(2010) - http://www.mof.gov.tw/ct.asp?xItem=53224&CtNode=130&mp=1。 梁振儒,「淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法」,台灣土壤及地下水環境保護協會簡訊No. 23,第13-20頁(2007)。 陳谷汎、高志明,「土壤及地下水物理/化學復育技術」,台灣土壤及地下水環境保護協會簡訊No. 5, 第3-5頁(2002)。 陳堰均,「過硫酸鹽處理氣相及水溶相擔環芳香烴污染物」,國立中興大學環境工程學系碩士論文,台中(2009)。 勞工安全衛生研究所,職場三氯乙烯容許標準建議值文件(2010) - https://www.iosh.gov.tw/Default.aspx。 黃宏勝、林麗娟,FE-SEM/CL/EBSD分析技術簡介,工業材料雜誌 No.201,第 99-108頁(2003)。 趙保路,「氧自由基和天然抗氧化劑」,科學出版社,北京(1999)。 趙振國,「應用膠體與界面化學」,化學工程出版社,第276-288頁,北京(2008)。
摘要: 本研究嘗試披覆黃鐵礦(Pyrite, FeS2)於粒狀活性碳(Granular activated carbon, GAC)上製備一具反應性之吸附劑(GAC-FeS2),以用於處理受三氯乙烯(Trichloroethylene, TCE)氯化有機物污染之水體。GAC-FeS2之製備程序為:(i)以濕式浸潤法將Fe3+沉浸至GAC孔隙結構內;(ii)於300oC煅燒下將Fe3+轉化為氧化鐵(Fe2O3)及(iii)於400oC下以硫粉使Fe2O3硫化為FeS2,分析結果顯示,經由硝酸氧化前處理GAC所製備之複合材料具17%(by wt) FeS2,BET表面積為273 m2/g及孔隙體積為0.168 cm3/g。對於應用於處理TCE之程序可分為兩階段:(i)GAC吸附及FeS2還原脫氯—藉由吸附移除液相TCE(80 mg/L),吸附約於15 h內達平衡,TCE於GAC-FeS2上並同時藉由FeS2降解TCE,反應結果得知720 h後約有10% TCE經由FeS2還原脫氯釋出Cl-;(ii)過硫酸鹽(Persulfate, S2O82-, PS)氧化再生TCE吸附飽和之GAC-FeS2—藉由FeS2活化PS以產生硫酸根自由基以破壞吸附相之TCE,經五次循環再生吸附飽和之GAC-FeS2過程中,於再吸附TCE之循環中,得知GAC-FeS2之再吸附量約可維持80%之初始吸附量,而第一次再生過程中反應24 h後有60%吸附於GAC-FeS2上之TCE被氧化而釋出Cl-,且經由Thiele-modulus模式分析結果亦證實,PS可於GAC孔隙中有效傳輸,以達破壞降解TCE之目的及再生GAC-FeS2之反應性。
The objective of this study was to synthesize reactive adsorbent, i.e., pyrite (FeS2) coated granular activated carbon (GAC) for the purpose of groundwater remediation of trichloroethylene (TCE). The synthesis processes of the composites followed the steps: (i) embedding of GAC with Fe3+ via incipient wetness impregnation method, (ii) iron transformed into iron oxide (Fe2O3) under calcinations of GAC/Fe3+ at 300oC, and (iii) thereafter, further calcinations of Fe2O3 at 400oC in the presence of sulfur powders to form FeS2. The results of analysis showed that the GAC-FeS2 composite made from HNO3 pretreated GAC exhibited 17% (by wt) contents of FeS2, surface area of 273 m2/g and pore volume of 0.168 cm3/g. Furthermore, GAC-FeS2 can be applied for subsurface remediation via two routes: (i) Adsorption of TCE onto GAC-FeS2 and simultaneous dechlorination of TCE by FeS2 - The results showed that removal of TCE from aqueous phase was equilibrated at around 15 h and 10% of sorbed TCE was degraded to release chloride after 720 h; (ii) Regeneration of GAC-FeS2 by persulfate (S2O82-) - Spent GAC-FeS2 was regenerated with sulfate radicals formed by FeS2 activated persulfate. The results showed that after five regeneration cycles sorption capacity was still around 80% of its original capacity. During the 1st regeneration cycle, the concentration of chloride ions liberated after 24 h of regeneration reaction was equivalent to around 60% of sorbed TCE being destroyed. Moreover, the results of analysis with Thiele-modulus model indicated that PS can be effectively diffuse from the bulk solution into GAC-FeS2 pores and to potentially destroy TCE for achieving the ultimate goal of long-term use of GAC-FeS2.
URI: http://hdl.handle.net/11455/5732
其他識別: U0005-0807201011503800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0807201011503800
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.