請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5735
標題: Electro-Fenton處理水相氯酚類化合物之研究
Removal of Chlorophenols in Aqueous Media by Electro-Fenton Process
作者: 賴秀美
Lai, Siou-Mei
關鍵字: Electro-Fenton程序
Electro-Fenton process
地下水污染
2,4-二氯酚
五氯酚
礦化率
Groundwater pollution
2,4-Dichlorophenol (2,4-DCP)
Pentachlorophenol (PCP)
Mineralization
出版社: 環境工程學系所
引用: 1.行政院環境保護署,土壤及地下水污染整治法,網址http://sgw.epa.gov.tw/public/0801 AnnualReport.asp 2.行政院環境保護署,毒管處物質安全資料表,網址http://www.epa.gov.tw/J/toxic. 3.行政院環境保護署,毒管處毒理資料庫,網址http://www.epa.gov.tw/J/toxic. 4.行政院環境保護署,環保署毒災應變諮詢中心,網址http://www.eric.org.tw/Chm /Chm_index.aspx.vp=MSDS 5.阮國棟(1984),廢水中各種酚類(phenols)去除之理論與實務。工業污染防治,第三卷,第三期,第88-103頁。 6.牛頓出版股份有限公司(1989),牛頓化學辭典,牛頓出版股份有限公司。 7.張讚昌、陳啟祥(1992),三氯酚微生物分解的研究。宜蘭農工學報,第四期,第73-81頁。 8.張秋萍、盧明俊、陳重男(1993),Fenton 技術在有害廢棄物處理上之應用。工業污染防治,第 46 期,第107頁-122 頁。 9.張碧芬、鄭興、袁紹英、王一雄(1993),三種氯酚化合物在環境中之消失及其對地下水污染之評估。中國環境工程學刊,第三卷,第三期,第209-215頁。 10.黃秋嫆 (1993),固定化氯酚分解菌處理廢水中含氯酚類有毒物質之研究。國立中興大學環境工程系碩士論文。 11.王俊欽(1994),固定化微生物對2,4-二氯酚及2,4,6-三氯酚之分解。國立中興大學環境工程學系暑假參予專題研究計畫成果報告。 12.陳秋楊、黃建清(1994),微生物毒性試驗法在石化工業排放水毒性評估之比較研究。第十九屆廢水技術研討會論文集,第62-68頁。 13.張芳淑、高思懷、吳嘉麗(1995),pH 值在Fenton系統中所扮演的角色探討。第二十屆廢水處理技術研討會論文集,第6-61頁。 14.王俊欽、李季眉(1995),固定化微生物對2,4-二氯酚及2,4,6-三氯酚之分解。第二十屆廢水處理由討技術論文集,第1-9~1-15頁。 15.郭加恩(1995),氯酚類在厭氧河口底泥生物分解。海洋大學海洋生物所碩士論文。 16.楊金鐘、林舜隆(1996),利用電動力法處理人工合成之鉛污染土壤。第十一屆廢棄物處理技術研討會論文集,第518-527頁。 17.王一雄(1997),土壤環境污染物與農藥。明文書局。 18.盧明俊、陳重南、粟華新、詹益欽(1997),利用針鐵礦催化過氧化氫分解2-氯酚。第二十二屆廢水處理技術研討會論文集,第810-813 頁。 19.盧明俊、陳重南、黃旭輝(1998),探討土壤中針鐵礦催化過氧化氫分解2-氯酚之反應。 20.李茂山(1998),受2,4-二氯酚、三氯乙烯污染土壤之生物復育。國立中興大學環境工程研究所碩士論文。 21.盧至人(1998)譯,地下水的污染整治。國立編譯館。 22.劉永章和葛煥彰(1998),電動力現象的基本理論。化工,第四十五卷,第二期,第77-83頁。 23.林財富、洪旭文(1999),受污染場址現地化學處理方法介紹。工業污染防治,第72 期,第178-200頁。 24.阮國棟、陳啟仁(1999),天然衰減法整治土壤及地下水污染之技術內涵與案例研究。工業污染防治,第71 期,第87-102頁。 25.劉奇岳(1999),電動力-Fenton法現地處理受三氯乙烯及4-率酚污染土壤之最佳操作條件探討。國立中山大學環境工程研究所碩士論文。. 26.袁菁、陳威錦、江姿幸(2000),受苯系有機污染物土壤以電動力-界面活性劑系統處理之研究。第十五屆廢棄物處理技術研討會,第2卷,第214-221頁。 27.林裕雄(2000),以電動力法處理受三氯乙烯及單氯酚污染值粘質土壤之研究。國立中興大學環境工程系碩士論文。 28.斯克誠和駱尚廉(2000),土壤與地下水污染整治政策與其實務。土壤水利,第26卷,第四期,第50-58頁。 29.洪肇嘉、吳惠銘、紀吉鴻和陳錕榮 (1998),電動力復育鉻、鎘、鉛污染土樣之研究。第十三屆廢棄物處理技術研討會論文集。 30.翁誌煌、林純玉(2003),利用零價鐵反應牆提昇電動力復育六價鉻污染黏土之研究。中華民國環境工程年會第一屆土壤地下水研討會。 31.張明琴、謝文彬、王敏昭、郭雅玲(2003),Fenton 試劑處理含多環芳香烴化合物污染土壤最佳化操作條件之研究。第八屆土壤及地下水污染整治研討會論文集,第203-212 頁。 32.葉桂君、陳韋舜、陳偉一、陳家銘(2003),中性pH 條件下Fenton-like反應不同鐵氧礦物催化過氧化氫之氫氧自由基生成。第八屆土壤及地下水污染整治研討會論文集,第261-270 頁。 33.張博荀、黃毅峰、黃耀輝、陳志勇(2004),H2O2/Fe2+ 化學氧化法處理反應性染料-Black B之研究。第二十八屆廢水處理技術研討會論文集。 34.劉秀美、郭加恩。1993。五氯酚及氯酚類在厭氧河口底泥之生物分解。臺灣省水產學會論文發表會摘要:V-35。 35.蕭如容、羅志英、阮幕玲、黃筠華、陳啟祥。1995。本土水蚤急毒性測試品質管制。第九屆環境分析化學研討會論文集:686。 36.楊茱芳 (2003)。五氯酚分解菌之分離與及其生理特性研究。國立中興大學環境工程系碩士論文。 37.Acar, Y. B., and Alshawabkeh, A. N. (1993). Principles of electrokinetic remediation, Environmental Science & Technology, 27(13), 2638-2647. 38.Alim, M. A., Lee, J. H., Shin, J. A., Lee, Y. J., Choi, M. S., Akoh, C. C., et al. (2008). Lipase-catalyzed production of solid fat stock from fractionated rice bran oil, palm stearin, and conjugated linoleic acid by response surface methodology, Food Chemistry, 106(2), 712-719. 39.Allen-King, R. M., Halket, R. M.,and Burris, D. R. (1997). Reductive transformation and sorption of cis-and trans-1, 2-dichloroethene in a metallic iron–water system.Society of Environmental Toxicology and Chemistry, l (16). 424-429. 40.Andreu, V., and Pic, Y. Determination of pesticides and their degradation products in soil: critical review and comparison of methods, TrAC Trends in Analytical Chemistry, 23(10-11), 772-789. 41.Arcand, Y., Hawari, J., and Guiot, S. R. (1995). Solubility of pentachlorophenol in aqueous solutions: The pH effect, Water Research, 29(1), 131-136. 42.Barbeni, M., Minero, C., Pelizzetti, E., Borgarello, E., and Serpone, N. (1987). Chemical degradation of chlorophenols with Fenton''s reagent (Fe2+ + H2O2), Chemosphere, 16(10-12), 2225-2237. 43.Barcelo, D., and Hennion, M. C. (1997). Trace determination of pesticides and their degradation products in water: Elsevier Science, Amsterdam. 44.Benitez, F. J., Acero, J. L., Real, F. J., Rubio, F. J., and Leal, A. I. (2001). The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions, Water Research, 35(5), 1338-1343. 45.Bigda, R. J. (1995). Consider Fenton''s chemistry for wastewater treatment, Environmental Science and Technology, 29(8), 1-17. 46.Bishop, D. F., Stern, G., Fleischman, M., and Marshall, L. S. (1968). Hydrogen Peroxide Catalytic Oxidation of Refractory Organics in Municipal Waste Waters, Industrial & Engineering Chemistry Process Design and Development, 7(1), 110-117. 47.Borthwick, P. W., and Schimmel, S. C. (1978). Toxicity of pentachlorophenol and related compounds to early life stages of selected estuarine animals. In: Pentachlorophenol:Chemistry, Pharmacology and Environmental Toxicology, K. R. Rao. Editor. Plenum Press, NY./London. (Proc. Symp., Pensacola, Fla., June 27-29). 48.Boyd, S. A., and Shelton, D. R. (1984). Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge, Appl Environ Microbiol, 47(2), 272-277. 49.Boye, B., Brillas, E., and Dieng, M. M.(2003). Electrochemical degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid in aqueous medium by peroxi-coagulation and photoperoxi-coagulation, Journal of Electroanalytical Chemistry, 540(1), 25-34. 50.Brillas, E., Calpe, J. C., and Casado, J. (2000). Mineralization of 2,4-D by advanced electrochemical oxidation processes, Water Research, 34(8), 2253-2262. 51.Bryant, F. O., Hale, D. D., and Rogers, J. E. (1991). Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries, 57, 2293-2301. 52.Bull, R. A., and Zeff, J. D. (1992). Chemical Oxidation Technomic Publishing Company. Inc., Lancaster, PA,26-36. 53.Chen, P., and Watts, R. J. (2000). Determination of rates of hydroxyl radical generation in mineral-catalyzed Fenton-like oxidation, Chinese institute of environmental engineering, 10 , 201-208. 54.Chou, S., Huang, C., and Huang, Y.H. (1999). Effect of Fe2+ on catalytic oxidation in a fluidized bed reactor, Chemosphere, 39(12), 1997-2006. 55.Cole, J. D., Woods, S. L., and Bricker, T. R. (1996). Pentachlorophenol reductive dechlorination in an interceptor trench: temperature effects, 34, 784-790. 56.Crow, D. R. (1994). Principles and applications of electrochemistry, Intl Specialized Book Service Inc. 57.Ernster, V. L., Barclay, J., Kerlikowske, K., Grady, D., and Henderson, I. C. (1996). Incidence of and treatment for ductal carcinoma in situ of the breast: Am Med Assoc, 275(12), 913-918. 58.Fountain, J. C. (1998). Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation, Ground-Water Remediation Technologies Analysis Center, TE-98-02 (1998). 59.Gallard, H., and De Laat, J. (2000). Kinetic modelling of Fe3+/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound, Water Research, 34(12), 3107-3116. 60.Gibson, S. A., and Suflita, J. M. (1986). Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds, Appl Environ Microbiol, 52 (12) , 681-688. 61.Gnann M., Gregor C. H., and Schelle S.(1993). Chemical oxidative process for purifying highly contaminated wastewater, WO patent 93/08129, Peroxid-Chemie GmbH, Germany. 62.Goerlitz, D. (1985). Migration of wood-preserving chemicals in contaminated groundwater in a sand aquifer at Pensacola, Florida, 19(10), 955-62. 63.Guthrie, M. A., Kirsch, E. J., Wukasch, R. F., and Grady, C. P. L. (1984). Pentachlorophenol biodegradation--II : Anaerobic, Water Research, 18(4), 451-461. 64.Hamed, J., Acar, Y. B., and Gale, R. J. (1991). Pb (II) removal from kaolinite by electrokinetics , 117 (2) , 241-271. 65.Hamed, J. T., and Bhadra, A. (1997). Influence of current density and pH on electrokinetics, Journal of Hazardous Materials, 55(1-3), 279-294. 66.Huang, C. P., Dong, C., and Tang, Z. (1993). Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment, Waste Management, 13(5-7), 361-377. 67.Ingols, R. S., Gaffney, P. E., and Stevenson, P. C.(1966). Biological activity of halophenols J Water Pollut Control Fed, 38(4), 629-635. 68.Jafar Khan, M. A., and Watts, R. J. (1996). Mineral-catalyzed peroxidation of tetrachloroethylene ,Water, Air, & Soil Pollution, 88(3-4), 247-260. 69.Jin, P., and Bhattacharya, S. K. (1997). Toxicity and biodegradation of chlorophenols in anaerobic propionate enrichment culture, Water Environment Federation, 69(5), 938-947. 70.J.J. Pignatello, E. Oliveros, A. Mackay. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton teaction and related chemistry, Critical Reviews in Environmental Science and Technology, 36(1),1-84. 71.Kang, N., Lee, D. S., and Yoon, J. (2002). Kinetic modeling of Fenton oxidation of phenol and monochlorophenols, Chemosphere, 47(9), 915-924. 72.Keith, L. H., and Telliard, W. A.(1979). Priority Pollutants: I. A Perspective View, Environmental Science and Technology, 13, 416-423. 73.Kim, Y.H., and Carraway, E. R. (2000). Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons, Environmental Science & Technology, 34(10), 2014-2017. 74.Kringstad, K. P., and Lindstroem, K. (1984). Spent liquors from pulp bleaching. Environmental Science & Technology, 18(8), 236A-248A. 75.Kuo, W. G. (1992). Decolorizing dye wastewater with Fenton''s reagent, Water Research, 26(7), 881-886. 76.Larsen, S., Hendriksen, H. V., and Ahring, B. K. (1991). Potential for thermophilic (50 degrees C) anaerobic dechlorination of pentachlorophenol in different ecosystems, Apply Environ Microbiol, 57(7) , 2085-2090. 77.Lin, S. H., Lin, c. M., and Leu, H. G. (1999). Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation, Water Research, 33(7), 1735-1741. 78.Lin, S. H., and Lo, C. C. (1997). Fenton process for treatment of desizing wastewater, Water Research, 31(8), 2050-2056. 79.Lindsey, M. E., and Tarr, M. A. (2000). Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide, Chemosphere, 41(3), 409-417. 80.Lipczynska-Kochany, E., Sprah, G., and Harms, S. (1995). Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction, Chemosphere, 30(1), 9-20. 81.Lu, M.C. (2000). Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite, Chemosphere, 40(2), 125-130. 82.Lu, M.C., Chang, Y.F., Chen, I. M., and Huang, Y.Y. (2005). Effect of chloride ions on the oxidation of aniline by Fenton''s reagent, Journal of Environmental Management, 75(2), 177-182. 83.Lunar, L., Sicilia, D., Rubio, S., Perez -Bendito, D., and Nickel, U. (2000). Degradation of photographic developers by Fenton''s reagent: condition optimization and kinetics for metal oxidation, Water Research, 34(6), 1791-1802. 84.Lu,M.C., J.N. Chen, C.P. Chang. (1997). Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst, J. Hazard. Mater, 65(3), 277-288. 85.Mecozzi, R., Di Palma, L., Pilone, D., and Cerboni, L. (2006). Use of EAF dust as heterogeneous catalyst in Fenton oxidation of PCP contaminated wastewaters. Journal of Hazardous Materials, 137(2), 886-892. 86.Miller, C. M., Valentine, R. L., Roehl, M. E., and Alvarez, P. J. J. (1996). Chemical and microbiological assessment of pendimethalin-contaminated soil after treatment with Fenton''s reagent, Water Research, 30(11), 2579-2586. 87.Murdoch, L. C., and Chen, J.-L. (1997). Effects of conductive fractures during in-situ electroosmosis, Journal of Hazardous Materials, 55(1-3), 239-262. 88.Naumczyk, J., Szpyrkowicz, L., and Zilio-Grandi, F. (1996). Electrochemical treatment of textile wastewater, Water Science & Technology, 34(11), 17-24. 89.Nicholson, D. K., Woods, S. L., Istok, J. D., and Peek, D. C. (1992). Reductive dechlorination of chlorophenols by a pentachlorophenol- acclimated methanogenic consortium, 58(7), 2280-2286. 90.Nyer, E.K., Fam, S., Kidd, D.F., Palmcr, P.L., Bocttcheer, G. Crossman, T.L., Suthersan, S.S. (1996). In-Situ Treatment, CRC Press, Inc., Boca Raton, Florida, 310-314. 91.Oikari, A., Holmbom, B., Aanaes, E., Miilunpalo, M., Kruzynski, G., and Castren, M. (1985). Ecotoxicological aspects of pulp and paper mill effluents discharged to an inland water system: Distribution in water, and toxicant residues and physiological effects in caged fish (Salmo gairdneri), Aquatic Toxicology, 6(3), 219-239. 92.Oturan, M. A., Oturan, N., Lahitte, C., and Trevin, S. (2001). Production of hydroxyl radicals by electrochemically assisted Fenton''s reagent: Application to the mineralization of an organic micropollutant, pentachlorophenol, Journal of Electroanalytical Chemistry, 507(1-2), 96-102. 93.Paasivirta, J., Hakala, H., Knuutinen, J., Otollinen, T., sarkka, J., Welling, L., et al. (1990). Organic chlorine compounds in lake sediments. III. Chlorohydrocarbons, free and chemically bound chlorophenols, Chemosphere, 21(12), 1355-1370. 94.Paasivirta, J., Heinola, K., Humppi, T., Karjalainen, A., Knuutinen, J., Mantykoski, K., et al. (1985). Polychlorinated phenols, guaiacols and catechols in environment, Chemosphere, 14(5), 469-491. 95.Paasivirta, J., Knuutinen, J., Maatela, P., Paukku, R., Soikkeli, J., and sarkka, J. (1988). Organic chlorine compounds in lake sediments and the role of the chlorobleaching effluents, Chemosphere, 17(1), 137-146. 96.Paolo, B., Pier Luigi, B., Paolo, C., Donatella, G., and Cecilia, L. (1988). Inhibiting action of chlorophenols on biodegradation of phenol and its correlation with structural properties of inhibitors, Biotechnol Bioeng, 31(8), 821-828. 97.Pignatello, J. J. (1992). Dark and photoassisted iron (3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide, Environ. Sci. Technol, 26(5), 944-951. 98.Prasad, K. C. K., and Richard, J. W. (1997). Depth of Fenton-Like Oxidation in Remediation of Surface Soil, J. Envir. Engrg, 123(1), 11-17. 99.Probstein, R. F., and Hicks, R. E. (1993). Removal of Contaminants from Soils by Electric Fields, Science, 260(5107), 498-503. 100.Reddy, K. R., Parupudi, U. S., Devulapalli, S. N., and Xu, C. Y. (1997). Effects of soil composition on the removal of chromium by electrokinetics. Journal of Hazardous Materials, 55(1-3), 135-158. 101.Reddy, K. R., Xu, C. Y., and Chinthamreddy, S. (2001). Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis, Journal of Hazardous Materials, 84(2-3), 279-296. 102.Richard, L. V., and Wang, H. C. A. (1998). Iron Oxide Surface Catalyzed Oxidation of Quinoline by Hydrogen Peroxide, Journal of Environmental Engineering, 124(1), 31-38. 103.Schumann U., and Grundler P. (1998). Electrochemical degradation of organic substances at PbO2 anodes: monitoring by continuous CO2 measurements, Water Research, 32(9), 2835-2842. 104.Sellers, R.M., (1980). Spectrophotometric determination of hydrogen-peroxide using potassium titanium(IV) oxalate, Analyst 105, 950-954. 105.Sun, Y., and Pignatello, J. J. (1993). Activation of hydrogen peroxide by iron(III) chelates for abiotic degradation of herbicides and insecticides in water. Journal of Agricultural and Food Chemistry, 41(2), 308-312. 106.Sun, Y., and Pignatello, J. J. (1993). Organic intermediates in the degradation of 2, 4-dichlorophenoxyacetic acid by Fe3+/H2O2 and Fe3+/ H2O2/UV, J. Envir, Engrg, 41(7), 1139-1142. 107.Suntio, L. R., Shiu, W. Y., and Mackay, D. (1988). A review of the nature and properties of chemicals present in pulp mill effluents, Chemosphere, 17(7), 1249-1290. 108.Szpyrkowicz, L., Juzzolino, C., and Kaul, S. N. (2001). A Comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent, Water Research, 35(9), 2129-2136. 109.Tang, W. Z., and Huang, C. P. (1995). The effect of chlorine position of chlorinated phenols on their dechlorination kinetics by Fenton''s reagent, Waste Management, 15(8), 615-622. 110.Uberoi, V., and Bhattacharya, S. K. (1997). Effects of Chlorophenols and Nitrophenols on the Kinetics of Propionate Degradation in Sulfate-Reducing Anaerobic Systems, Environmental Science and Technology, 31(6), 1607-1614. 111.Valo, R., Kitunen, V., Salkinoja-Salonen, M. S., and Raisanen, S. (1985). Chlorinated phenols and their derivatives in soil and ground water around wood-preserving facilities in Finland, Technol, 17(1), 1381-1384. 112.Vane, L. M., and Zang, G. M. (1997). Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation processes, Journal of Hazardous Materials, 55(1-3), 1-22. 113.Venkatadri, R., and Peters, R. W. (2009). Chemical Oxidation Technologies: Ultraviolet Light/Hydrogen Peroxide, Fenton''s Reagent, and Titanium Dioxide-Assisted Photocatalysis, Hazardous Waste and Hazardous Materials, 10(2), 107-149. 114.Ventura, A., Jacquet, G., Bermond, A., and Camel, V. (2002). Electrochemical generation of the Fenton''s reagent: application to atrazine degradation, Water Research, 36(14), 3517-3522. 115.Virkutyte, J., Sillanpaa, M., and Latostenmaa, P. (2002). Electrokinetic soil remediation - critical overview, The Science of The Total Environment, 289(1-3), 97-121. 116.Walling, C. (1975). Fenton’s Reagent Revisited. Account of Chemical Research, 8(1), 121-131. 117.Walling, C., and Goosen, A. (1973). Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide: Effect of organic substrates, J. Amer. Chem. Soc, 95(9), 2987-2991. 118.Wang, Q., and Lemley, A. T. (2002). Oxidation of diazinon by anodic Fenton treatment, Water Research, 36(13), 3237-3244. 119.Wang, Y.J., Lee, C.C., Chang, W.C., Liou, H.B., and Ho, Y.S. (2001). Oxidative stress and liver toxicity in rats and human hepatoma cell line induced by pentachlorophenol and its major metabolite tetrachlorohydroquinone, Toxicology Letters, 122(2), 157-169. 120.Wang, Y. T., Muthukrishnan, S., and Wang, Z. (1998). Reductive dechlorination of chlorophenols in methanogenic cultures, J. Envir. Engrg, 124(3), 231-238. 121.Watts, R. J., Udell, M. D., Rauch, P. A., and Leung, S. W. (2009). Treatment of Pentachlorophenol-Contaminated Soils Using Fenton''s Reagent, Hazardous Waste and Hazardous Materials, 7(4), 335-345. 122.Wu, Z., Zhou, M., and Wang, D. (2002). Synergetic effects of anodic-cathodic electrocatalysis for phenol degradation in the presence of iron(II), Chemosphere, 48(10), 1089-1096. 123.Xie, T. M., Abrahamsson, K., Fogelqvist, E., and Josefsson, B. (1986). Distribution of chlorophenolics in a marine environment. Environmental Science and Technology, 20(5), 457-463. 124.Xu, X.R., Zhao, Z.Y., Li, X.Y., and Gu, J.D. (2004). Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton''s reagent, Chemosphere, 55(1), 73-79. 125.Yang, G. C. C., and Long, Y.W. (1999). Removal and degradation of phenol in a saturated flow by in-situ electrokinetic remediation and Fenton-like process, Journal of Hazardous Materials, 69(3), 259-271. 126.Yeung, A. T., and Mitchell, J. K. (1993). Coupled fluid, electrical and chemical flows in soil , Telford, 43(1), 121-134. 127.Yi-Tin, W., Shanmuganathan, M., and Zhenming, W. (1998). Reductive Dechlorination of Chlorophenols in Methanogenic Cultures, J. Envir. Engrg, 124 (3), 231-238.
摘要: 為解決台灣地區日益嚴重的地下水污染問題,本研究運用電化學機制為處理程序,針對地下水含氯有機化合物加以破壞去除,研究過程中針對含氯有機化合物之去除率、礦化率及脫氯成效進行探討,在求得最佳操作參數後,運用於真實地下水之氯酚污染去除,並探討電化學程序實地運用之可行性。 本研究所使用之含氯有機化合物為2,4-二氯酚(2,4-Dichlorophenol, 2,4-DCP)及五氯酚(Pentachlorophenol, PCP)。由研究成果中發現,Electro-Fenton (EF)系統控制電流密度0.75 mA/cm2及空氣曝氣量0.7 mL/min時,系統有最佳之亞鐵及過氧化氫生成,反應前30分鐘過氧化氫生成量與時間成線性關係,其生成速率為0. 65 mg- H2O2/min,且過氧化氫生成後,關閉電源及曝氣設備60分鐘後,系統中過氧化氫濃度約有20 mg/L。由批次實驗結果得知,本研究所使用之電化學程序對水相中氯酚化合物皆具有處理效果,其中以Electro-Fenton系統具最佳之處理效能,以Electro-Fenton系統處理180分鐘後,水相中2,4-DCP及PCP殘餘率及礦化率分別為19.8及35.9%與78.7及63.8%;延長Electro-Fenton處理時間對整體之效能亦有所提升,2,4-DCP及PCP之去除率分別提升1.02及1.3倍。在相同操作條件下,系統去除效能高低次序為EF>EK4 (Electrokinetic, pH 4)>EK10 (Electrokinetic, pH 10)>EFL (Electo-Fenton-like);礦化能力高低秩序為EF> EK4> EK10> EFL;脫氯能力方面為EF>EK4≒EFL>EK10。在真實地下水污染處理方面,以最佳操作參數處理180分鐘後,2,4-DCP及PCP之去除率及礦化率分別為81.29及77.50%和77.49及54.71%。由實驗結果證明,Electro-Fenton處理程序的確適用於地下水中氯酚類化合物之整治。
In this study, we apply electrochemical processes to the degradation of chlorophenols in aqueous media. The target pollutants 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) were conducted by electrokinetic process (EK) and electro-Fenton process (EF);and removal rate, mineralization and dechlorination for different processes were investigated. Based on the results, Electro-Fenton system has the best rate of producing ferrous ion and hydrogen peroxide at electric density of 0.75 mA/cm2 and air flow of 0.7 mL/min. The synthesis mass of hydrogen peroxide by EF process followed linear relation with time at the first 30 min which was 0.65 mg-H2O2/min. According to the results of batch experimental, all electrochemical processes have great efficiency in the removal of chlorophenols in aqueous media in this study. Among these processes, the Electro-Fenton process have the best treatment efficiency, that 2,4-DCP and PCP residual rate was 19.8 and 35.9%, and mineralization efficiency was 78.7 and 63.8%, respectively after 180 min. Lengthening treatment time can enhance the removal efficiency, that increase 10.2 and 1.3 times for 2,4-DCP and PCP, respectively. Under the same operating conditions, the order of removal efficiency is EF>EK4 (Electrokinetic, pH 4)>EK10 (Electrokinetic, pH 10)>EFL (Electo-Fenton-like);the mineralization efficiency is EF> EK4> EK10> EFL; the dechlorination efficiency is EF>EK4≒EFL>EK10. Application of optimum conditions in treatment of true groundwater pollution, the removal rate and mineralization efficiency was 81.29 and 77. 50% for 2,4-DCP and 77.49 and 54.71% for PCP, respectively. Proved by the experimental results, Electro-Fenton process is really suitable for remediation of chlorophenols in groundwater.
URI: http://hdl.handle.net/11455/5735
其他識別: U0005-0906201017085900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0906201017085900
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。