Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5741
標題: 高溫好氧薄膜系統對高濃度有機廢水處理成效之研究
Treatment of High Concentration Organic Wastewaters with a Thermophilic Aerobic Membrane System
作者: 施善瑞
Shih, Shan-Ruei
關鍵字: thermophilic aerobic membrane system
高溫好氧薄膜系統
specific substrate utilization rate
kinetic model
Webb model
PCR-DGGE
SEM-EDS
比基質利用率
動力參數
Webb model
PCR-DGGE
SEM-EDS
出版社: 環境工程學系所
引用: 王宇萱(2008)“高溫好氧處理對造紙纖維廢水之可行性初步研究” 碩士論文,國立中興大學環境工程學系,台中。 邱健人(2001)“食品生物化學” 復文書局,台南。 吳勇興 (2004)“自發性高溫好氧處理程序之研究:系統參數測定演算法之開發”博士論文,國立中興大學環境工程學系,台中。 沈育資(2008)“高溫好氧油脂分解菌動力參數研究” 碩士論文,國立中興大學環境工程學系,台中。 林秋裕(2001)“環境工程微生物學” 國彰出版社,台中。 林宜儒(2004)“生物固體物做為受污染土壤生物復育添加劑之可行性探討” 碩士論文,國立中興大學環境工程學系,台中。 林建三(2004)“環境工程概論” 鼎茂圖書出版股份有限公司,台北。 林慈儀(2008)“高溫好氧系統生物分解動力學及菌相分析之研究” 碩士論文,國立中興大學環境工程學系,台中。 林慧蓉(2009)“評估高溫好氧系統對高濃度有機廢水處理成效及菌相分析研究” 碩士論文,國立中興大學環境工程學系,台中。 徐振盛、李孟諺(1995)“環境微生物學” 淑馨出版社,台北。 陳國誠(1991)“廢水生物處理學” 國立編譯館,台北。 許以樺(2000)“以高溫好氧處理油脂廢水可行性研究” 碩士論文,國立中興大學環境工程學系,台中。 程郁璁(2005)“厭氧生物處理四氯乙烯代謝機制及菌相之探討” 碩士論文,國立中興大學環境工程學學系,台中。 鄭如琇(2006)“以微生物組成探討厭氧發酵系統之產氫效能” 碩士論文,國立中興大學環境工程學學系,台中。 Adham, S. S., R. S. Trussell, P. Gagliardo, D. Jenkins, and R. R. Trussell (2001) “Membrane Bioreactors:Feasibility and Use in Water Reclamation” Water Environ. Res. Ahn, Y., E. J. Park, Y. K. Oh, S. Park, G. Webster, and A. J. Weightman (2005) “Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production” FEMS Microbiol. Lett. 249 : 31-38 Amann, R., H. Lemmer, and M. Wagner (1998) “Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques” FEMS Microbiol. Ecol. 25: 205-215. Banat, F. A., S. Prechtl, and F. Bischof (2000) “Aerobic thermophilic treatment of sewage sludge contaminated with 4-nonylphenol” Chemosphere 41: 297-302. Barr, T. A., J. M. Taylor, and S. J. B. Duff (1996) “Effect of HRT,SRT and temperature on the performance of activated sludge reactors treating bleached kraft mill effluent” Wat. Res. 30: 799–810. Berube, P. R. and E. R. Hall. (1999) “Treatment of evaporator condensate using a high temperature membrane bioreactor: determination of maximum operating temperature and system costs” In: Proceedings of TAPPI 1999 International Environmental Conference, Toronto, Canada., pp 769–80. Blackburn, J.W. (2000) “Profitable odor reduction and heat production from swine wastes using advanced aerobic thermophilic treatment” In: Moore, J. A. (Ed), Proc. Eighth International Symposium on Animal, Agricultural and Food Processing Waste. Des Moines, IA, 537–546. Bohdziewicz J. and E. Sroka (2006) “Application of hybrid systems to the treatment of meat industry wastewater” Desalination 198: 33-40. Boogerd, F. C., P. Bos, J. G. Kuenen, J. J. Heijnen, and R. G. J. M. van der Lans (1990) “Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles: A case study related to the microbial desulfurization of coal” Biotechnol. Bioeng. 35 : 1111-1119 Burt, P., M. H. Littlewood, S. F. Morgan, B. N. Dancer, and J. C. Fry (1990) “Venturi aeration and thermophilic aerobic sewage digestion in small-scale reactors” Appl. Microbiol. Biot. 33: 721-724. Callia, B., B. Mertoglua, K. Roestb, and B. Inancc (2006) “Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate” Bioresour. Technol. 97: 641-647. Cetin, F. D. and G. Surucu (1990) “Effects of temperature and pH on the settlability of activated sludge flocs” Wat. Sci. Technol. 22: 249-254. Chang, I. S., P. Le Clech, B. Jefferson, and S. Judd (2002) “Membrane Fouling in Membrane Bioreactors for Wastewater Treatment” J. Environ. Eng. 128: 1018-1029. Chang, C. Y., J. S. Chang, S. Vigneswaran, and J. Kandasamy(2008)“Pharmaceutical wastewater treatment by membrane bioreactor process- a case study in southern Taiwan” Desalination 234:393-401. Couillard, D. and S. Zhu (1993) “Thermophilic aerobic process for the treatment of slaughterhouse effluents with protein recovery” Environ. Pollut. 79:121-126. Cote, P., M.Masini, and D. Mourato (2004) “Comparison of Membrane Options for Water Reuse and Reclamation” Desalination 167:1-11. de Lucas, A., L. Rodriguez, J. Villasenor, and F. J. Fernandez (2005) “Biodegradation kinetics of stored wastewater substrates by a mixed microbial culture” Biochem. Eng. J. 26 : 191-197 Dias, J. C. T., R. P. Rezende, C. M. Silva, and V. R. Linardi (2005) “Biological treatment of kraft pulp mill foul condensates at high temperatures using a membrane bioreactor” Process Biochem. 40: 1125-1129. Dorigo, U., L. Volatier, and J. F. Humbert (2005) “Molecular approaches to the assessment of biodiversity in aquatic microbial communities” Wat. Res. 39 : 2207-2218. Edwars V. H. (1970) “The influence of high substrate concentrations on microbial kinetics, Biotechnol” Bioeng. 12: 679- 712. Ferris, M. J. and D. M. Ward. (1997) “Seasonal distrbutions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis” Appl. Environ. Microbiol. 63: 1375-1381. Fuchs, H. (1973) “Biological decomposition of organic material” United States patent 3: 113. Gander, M., B. Jefferson, and S. Judd (2000) “Aerobic MBRs for Domestic Wastewater Treatment: A Review with Cost considerations” Sep. Purif. Techol. 18: 119-130. Gonzalez, S., M. Petrovic, and D. Barcelo (2007) “Removal of a Broad Range of Surfactants from Municipal Wastewater- Comparison between Membrane Bioreactor and Conventional Activated Sludge Treatment” Chemosphere 67: 335-343. Grunditz, C. and G. Dalhammar (2001) “Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter” Wat. Res. 35: 433-440. Heinonen-Tanski, H., T. Kiuru, J. Ruuskanen, K. Korhonen, J. Koivunen, and A. Ruokoja‥rvi (2005) ”Thermophilic aeration of cattle slurry with whey and/or jam wastes” Bioresource Technol. 96 : 247–252 Huber, H., M. Thomm, H. Konig, G. Thies, and K. O. Stetter (1982) “Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen” Arch. Microbiol. 132: 47-50. Jahren, S.J., J. A. Rintala, and H. Odegaard (2002) “Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions” Wat. Res. 36: 1067-1075. Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe (1983) “Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from submarine hydrothermal vent” Arch. Microbiol. 136: 254-261. Judd, S. (2004) “A Review of Fouling of Membrane Bioreactors in Sewage Treatment” Wat. Sci. Technol. 49: 229-235. Juteau, P., D. Tremblay, C. B. Ould-Moulaye, J. G. Bisaillon, and R. Beaudet (2004) “Swine waste treatment by selfheating aerobic thermophilic bioreactors” Wat. Res. 38: 539-546. Juteau, P. (2006) “Review of the use of aerobic thermophilic bioprocesses for the treatment of swine waste” Livest. Sci. 102: 187-196. Kang, Y. T., Y. H. Cho, and E. H. Chung (2007) “Development of the Wastewter Reclamation and Reusing System with aSubmerged Membrane Bioreactor Combined Bio-Filtration” Desalination, 202: 68-76. Kimura, K., N. Yamato, H.Yamamura, and Y. Watanabe (2005) “Membrane Fouling in Pilot-Scale Membrane Bioreactors (MBR2) Treating Municipal Wastewater” Environ. Sci. Technol. 39: 6293-6299. Kumar, A., S. Kumar, and S. Kumar (2005) “Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194” Biochem. Eng. J. 22: 151-159. Kurian, R., C. Acharya, G. Nakhla, and A. Bassi (2005) “Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors” Wat. Res. 39: 4299-4308. Kurian, R., G. Nakhla, and A. Bassi (2006) “Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor (MBR)” Chemosphere 65: 1204-1211. Kurisu, F., H. Satoh, T. Mino, and T. Matsuo (2002) “Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method” Wat. Res. 36: 429-438. LaPara, T. M. and J. E. Alleman (1999) “Thermophilic aerobic waste treatment, review paper” Wat. Res. 33: 895-908. LaPara, T. M., C.H. Nakatsu, J. E. Alleman, and A. Konopka (1999) “Thermophilic aerobic biological wastewater treatment : process performance and community analysis” In: Water Environment Federation and Purdue Industrial Wastes Conference, June 27-30,1999. IN, USA, pp. 79-92. LaPara, T. M., A. Konopka, C. H. Nakatsu, and J. E. Alleman (2001) “Thermophilic aerobic treatment of a synthetic wastewater in a membrane-coupled bioreactor” J. Ind. Microbiol. Biot. 26 : 203-209 Le-Clech, P., V. Chen, and T. A. G. Fane (2006) “Fouling in Membrane Bioreactors Used in Wastewater Treatment” J. Membrane Sci. 284: 17-53. Lee, J. W., H. W. Lee, S. W. Kim, S. Y. Lee, Y. K. Park, J. H. Han, S. I. Choi, Y. S. Yi, and Z. Yun (2004) “Nitrogen removal characteristics analyzed with gas and microbial community in thermophilic aerobic digestion for piggery waste treatment” Wat. Sci. Technol. 49:349–357. Liao, B. Q., D. M. Bagley, H. E. ,Kraemer, G. G. Leppard, and S. N. Liss (2004) “A Review of Biofouling and its Control in Membrane Separation Bioreactors” Wat. Environ. Res. 76: 425-436. Liao, B. Q., J. T. Kraemer, and D. M. Bagley (2006) “Anaerobic Membrane Bioreactors:Applications and Research Directions” Crit. Rev. Env. Sci. Tec. 36: 489-530. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. (1997) “Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA” Appl. Environ. Microbiol. 63: 4516-4522. Maidak, B., J. Cole, T. Lilburn, C. J. Parker, P. Saxman, R, Farris, G. Garrity, G. Olsen, T. Schmidt, and J. Tiedje (2001) “The RDPⅡ(Ribosomal Database Project)” Nucleic Acid Res. 29 : 173-174 Marrot, B., A. Barrios-Martinez, P. Moulin, and N. Roche (2004) “Industrial Wastewater Treatment in a Membrane Bioreactor: A Review” Environ.Prog. 23: 59-68. Melin, T., B. Jefferson, D. Bixio, C. Thoeye, W. D. Wilde, J. D. Koning, J. vander Graaf, and T. Wintgens (2006) “Membrane Bioreactor Technology for Wastewater Treatment and Reuse” Desalination 187: 271– 282. Mikkelsen, H. and K. Keiding (2002) “The shear sensitivity of activated sludge: an evaluation of the possibility for a standardised floc strength test” Wat. Res. 36: 2931-2940. Mohaibes, M. and H. Heinonen-Tanski (2004) “Aerobic thermophilic treatment of farm slurry and food wastes” Bioresource Technol. 95: 245-254. Morris, C. E., M. Bardin, O. Berge, P. Frey-Klett, N. Fromin, H. Girardin, M. H. Guinebretie` re, P. Lebaron, J. M. Thie’ ry, and M. Troussellier (2002) “Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999” Microb. Mol. Biol. Rev. 66: 592–616. Oles, J., N. Dichtl, and H. Niehoff (1997) “Full scale experience of two stage thermophilic/mesophilic sludge digestion” Wat. Sci. Technol. 36 : 449-456 Olsen, G. J., D. J. Lane, S. J. Giovannoni, and N. R. Pace (1986) “Microbial ecology and evolution: a ribosomal RNA approach” Annu. Rev. Microbiol. 40: 337-365. Pace, N. R., D. A. Stahl, D. J. Lane, and G. J. Olsen (1986) “The analysis of natural microbial populations by ribosomal RNA sequences” Adv. Microb. Ecol. 9: 1-55. Patel, J., G. Nakhla, and A. Margaritis (2005) “Optimization of Biological Nutrient Removal in a Membrane Bioreactor System” J. Environ. Eng. 131: 1021-1029. Peters, T. A., R. Gunther, and K. Vossenkaul (2000) “Membrane Bioreactors in Wastewater Treatment” Filtr. Separat. 37: 18-21. Ramesh A., D. J. Lee, M. L. Wang, J. P. Hsu, R. S. Juang, K. J. Hwang, J. C. Liu, and S. J. Tseng (2006) “Biofouling in Membrane Bioreactor” Separ. Sci. Technol. 41: 1345-1370. Rittmann, B. E., and P. L. McCarty (2001) “Environmental Biotechnology: Principles and Application” McGRAW-HILL INTERNATIONAL EDITIONS, Singapore: 16, 339. Rosenberger, S., H. Evenblij, S. T. Poele, T. Wintgens, and C. Laabs (2005) “The Importance of Liquid Phase Analyses to Understand Fouling in Membrane Assisted Activated Sludge Processes- Six Case Studies of Different European Research Groups” J. Membrane Sci. 263: 113-126. Rozich, A. F. and R. J. Colvin (1997) “Design and oper-ational considerations for thermophilic aerobic reactors treating high strength wastes and sludges” In Proceedings of the 52nd Industrial Waste Conference, Purdue University, ed. J. E. Alleman, Ann Arbor Press, Ann Arbor, MI, U.S.A.. Rozich, A. F. and K. Bordacs (2002) “Use of thermophilic biological aerobic technology for industrial wastewater treatment” Wat. Sci. Tech. 46: 83-89. Sakai, Y., T. Aoyagi, N. Shiota, A. Akashi, and S. Hasegawa (2000) “Complete decomposition of biological waste sludge by thermophilic aerobic bacteria” Wat. Res. 42 : 81-88 Salles, J. F., F. A. De Souza, and J. D. van Elsas (2002) “Molecular method to assess the diversity of Burkholderia species in environmental samples” Appl. Environ. Microbiol. 68: 1595-1603. Shiota, N., A. Akashi, and S. Hasegawa (2002) “A strategy in wastewater treatment process for significant reduction of excess sludge production” Wat. Sci. Technol. 45 : 127-134 Skjelhaugen, O. J. (1999) “Thermophilic aerobic reactor for processing organic liquid wastes” Wat. Res. 33 : 1593-1602 Stenstrom, M. K. and R. G. Gilbert (1981) “Effects of alpha, beta, and theta factor upon the design, specification and operation aeration systems” Wat. Res. 15: 643-654. Strauch, D. (1991) “Survival of pathogenic microorganisms and parasites in excreta, manure and sewage sludge” Rev. Sci. Tech. 10: 813-846. Strauch, D. (1998) “Pathogenic microorganisms in sludge. Anaerobic digestion and disinfection methods to make sludge usable as a fertilizer” Eur. Wat. Manag. 1: 12-26. Surucu, M. H., E. S. K. Chian, and R. S. Engelbrecht (1976) “Aerobic thermophilic treatment of high strength wastewaters” J. WPCF 48 : 669-679 Surucu, G. (1999) “Growth requirements of thermophilic aerobic microorganisms in mixed cultures for the treatment of strong wastes” Wat. Sci. Tech. 40: 53-60. Suvilampi, J. and J. Rintala (2002) “Comparison of activated sludge process at different temperatures: 35℃, 27-55℃, and 55℃” Environ. Technol. 23: 1127-1134. Suvilampi, J., A. Lehtomaki, and J. Rintala (2003) “Comparison of laboratory-scale thermophilic biofilm and activated sludge processes integrated with a mesophilic activated sludge process” Bioresource Technol. 88: 207-214. Tchobanoglous, G., F. L. Burton, and D. H. Stensel (2003) “Wastewater Engineering Treatment and Reuse, 4th ed.” The McGraw-Hill Companies, New York, U.S.A.. Terwilleger, A.R., and L. S. Crauer (1975) “Liquid composting applied to agricultural wastes. Proc” Managing livestock wastes: Third International Symposium on Livestock Wastes. St-Joseph, MI, 501-505. Torsvik, V., J. Goksoyr, and F. L. Daae (1990) “High diversity in DNA of soil bacteria” Appl. Environ. Microbiol. 56: 782–787. Torsvik, V., L. Ovreas, and T. F. Thingstad (2002) “Prokaryotic diversity - magnitude, dynamics and controlling factors” Science 296: 1064-1066. Tripathi, C. and D.Allen, (1999) “Comparison of mesophilic and thermophilic aerobic biological treatment in sequencing batch reactors treating bleached kraft pulp mill effluent” Wat. Res. 33: 836–846. US EPA (1990) “Autothermal thermophilic aerobic digestion of municipal wastewater sludge” EPA/625/10-90/007. US EPA (1992) “Control of pathogens and vector attraction in sewage treatment” EPA/625/R-92/013 Visvanathan, C., R. B. Aim, and K. Parameshwaran (2000) “Membrane Separation Bioreactors for Wastewater Treatment” Crit. Rev. Env.Sci. Tec. 30: 1-48 Visvanathan, C., M. K. Choudhary, M. T. Montalbo, and V. Jegatheesan (2007) “Landfill leachate treatment using thermophilic membrane bioreactor” Desalination 204: 8-16 Vogelaar, J. C. T., A. Klapwijk, J. B. Van Lier, and W. H. Rulkens (2000) “Temperature effects on the oxygen transfer rate between 20 and 55℃” Wat. Res. 34: 1037-1041. Vogelaar, J., J. van Lier, A. Klapwijk, M. de Vries, and G. Lettinga (2002) “Assessment of effluent turbidity in mesophilic and thermophilic activated sludge reactors-origin of effluent colloidal material” Appl. Microbiol. Biotechnol. 59: 105-111. Wang, S. J. and K. C. Loh (1999) “Modeling the role of metabolic intermediates in kinetics of phenol biodegradation” Enzyme Microb. Tech. 25: 177-184. Watanabe, H., T. Kitamura, S. Ochi, and M. Ozaki (1997) “Inactivation of pathogenic bacteria under mesophilic and thermophilic conditions” Wat. Sci. Technol. 36 : 25-32 Yang, W., N. Cicek, and J. Ilg (2006) “State-of-the-art of Membrane Bioreactors: Worldwide Research and Commercial Applications in North America” J. Membrane Sci. 270: 201-211. Yilmaz, T., A. Yuceer, and M. Basibuyuk (2008) “A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater” Bioresource Technol. 99 : 156-163 Zita, A. and A. Hermansson (1997) “Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs” Appl. Environ. Microbiol. 63: 1168-1170.
摘要: 高溫好氧系統具有高有機負荷、高基質利用速率、降解速率快、低污泥產率、佔地面積小、操作穩定性高及有效抑制致病菌等優點,但系統中污泥沉降性不佳的缺點會降低出流水的品質。因此,本研究建立一套高溫好氧薄膜系統,期望以薄膜的過濾特性來解決這方面的問題。 本研究高溫好氧薄膜反應槽之有效體積為25 L並將溫度控制於55℃,系統中高溫混合菌群已包含Bacillus sp.、Tepidiphilus sp.及Caldilinea aerophila sp.,並以麩胺酸及蔗糖做為進流基質(COD= 10,000 mg/L),待馴化穩定後評估系統降解高濃度有機廢水之可行性。此外,利用批次試驗求取高溫好氧薄膜系統中微生物之反應動力參數,並進一步探討文獻中微生物生長動力模式之適用性。並以分子生物技術PCR-DGGE,探討高溫好氧薄膜系統中混合菌群的組成。另一方面,利用SEM-EDS分析來觀察薄膜積垢的表面形態與元素組成,進一步探討造成本系統薄膜阻塞的可能物質。 本研究結果顯示,當高溫好氧薄膜系統馴養穩定後,sCOD之生物降解率最高可達97%,TKN去除率最高可達87%,而有機氮去除率高達99.5%。當基質濃度為20,000 mg/L時,高溫好氧薄膜系統之微生物具有高比基質利用速率(q= 111.84 mg-sub/mg-cell-day),充分展現高溫好氧薄膜系統對高濃度有機廢水的處理優勢。由不同基質濃度之批次實驗求取高溫好氧生物降解之反應動力參數,以文獻中動力模式推估的結果顯示,Webb model與實驗值的擬合程度最好,R2為0.92,而以Webb model所推估之參數值分別為μmax=8.59 mg-cell/mg-cell-day、Ks=1,320 mg/L、Ki=1.80×1012 mg/L。 利用PCR-DGGE分析高溫好氧薄膜系統的菌相組成,以968f-gc及1392r引子組經PCR反應後,使用變性梯度30~70%的DGGE膠體做為族群分析的最適條件,DGGE圖譜上之亮帶經切膠回收及定序比對後,顯示高溫系統中的優勢族群主要為Thermus sp.。另外,利用SEM-EDS分析結果,推測造成系統薄膜阻塞的原因主要為生物積垢和無機鹽結垢。
A thermophilic aerobic system has many advantages, such as high organic loading, higher substrate utilization rate, high biodegradation rate, low sludge yield, smaller area requirement, excellent process stability, and destruction of most pathogenics, over a traditional aerobic one. However, it also has disadvantages, such as low settlability that results in the problem of low quality effluent. Therefore, a thermophilic aerobic membrane system was set up to improve effluent quality in this study. In this research, the thermophilic aerobic membrane bioreactor of 25 L was operated at 55℃. The thermophilic aerobic membrane system consisted of mixed culture with Bacillus sp., Tepidiphilus sp., and Caldilinea aerophila sp.. The high concentration organic wastewater consisted of glutamic acid and sucrose to make the influent substrate of 10,000 mg-COD/L for the system. When the system reached steady state, the treatment efficiency of high concentration organic wastewater was evaluated. Furthermore, kinetic models were employed to fit to the batch experimental kinetic parameters of the thermophilic aerobic membrane system. In addition, PCR-DGGE was employed to determine the microbial community of mixed culture in the bioreactor. Besides, SEM-EDS was employed to determine the causes of membrane fouling in this bioreactor. The result showed that the highest removal efficiency of sCOD, TKN, Org-N were up to 97, 87, and 99.5% , respectively, in the thermophilic aerobic membrane system. The maximum specific substrate utilization rate was found to be 111.84 mg-sub/mg-cell-day in the research, and it was achieved at the initial substrate concentration of 20,000 mg/L. That confirms that the thermophilic aerobic membrane system has exhibited considerable advantages for the treatment of high-strength wastewaters. Additionally, a nonlinear regression technique was employed to determine the kinetic parameters of the thermophilic aerobic biodegradation process, and it suggested that Webb model could be successfully used because of its high correlation coefficient of 0.92. Moreover, the kinetic parameters of μmax, Ks, and Ki evaluated by Webb model were 8.59 mg-cell/mg-cell-day, 1,320 mg-COD/L, and 1.80×1012 mg-COD/L, respectively. The molecular approach of PCR-DGGE was used to assess microbial diversity in the thermophilic aerobic membrane system. PCR amplifications were carried out by 968f-gc and 1392r primer sets which target with the 16S rDNA universal region of eubacteria. The linear denaturing gradients of DGGE ranging from 30% to 70% were used for the analysis of mixed thermophilic microbial populations. DGGE banding patterns were evaluated, and bacterial populations were identified by sequencing individual bands. As a result, the species of Thermus sp. was certainly the dominant microorganisms in the bioreactor. Furthermore, the approach of SEM-EDS was used to assess membrane fouling in the thermophilic aerobic membrane system. As a result, biological slime formation and scale formation caused membrane fouling.
URI: http://hdl.handle.net/11455/5741
其他識別: U0005-1108201015220500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108201015220500
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.