請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5743
標題: 台中及南海地區大氣懸浮微粒的化學組成及其汙染源貢獻量解析
Chemical Composition and Source Apportionment of Ambient Particulates in Taichung and South China Sea
作者: 黃柏翔
Huang, Bo-Shung
關鍵字: Taichung
台中
South China Sea
dust storm
CMB receptor model
南海
沙塵暴
CMB受體模式
出版社: 環境工程學系所
引用: 參考文獻 Barker, D. R. and L. M. Diana, “Simple Method for Fitting Data When Both Variables Have Uncertainties,” The American Journal of Physics, Vol. 42, pp. 224-226 (1974). Brook, J. R., T. F. Dann and R. T. Burnett, “The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Particulate Matter at Multiple Canadian Locations,” Journal of the Air & Waste Management Association, Vol. 47, pp. 2-19 (1997). Chan, Y. C., R. W. Simpson, G. H. Mctainsh, P. D. Vowles, D. D. Cohen and G. M. Bailey, “Characterisation of Chemical Species in PM2.5 and PM10 Aerosols in Brisbane, Australia,” Atmospheric Environment, Vol. 31, pp. 3773-4785 (1997). Chellam, S., P. Kulkarni and M. P. Fraser, “Emissions of Organic Compounds and Trace Metals in Fine Particulate Matter from Motor Vehicles: A Tunnel Study in Houston, Texas,” Air and Waste Management Association, Vol. 55, pp. 60-72 (2005). Chen, K. S., C. F. Lin and Y. M. Chou, “Determination of Source Contributions to Ambient PM2.5 in Kaohsiung, Taiwan, Using a Receptor Model,” Journal of the Air and Waste Management Association, Vol. 51, pp. 489-498 (2001). Chen, S. J., L. T. Hsieh, C. C. Tsai and G. C. Fang, “Characterization of Atmospheric PM10 and Related Chemical Species in Southern Taiwan during the Episode Days,” Chemosphere, Vol. 53, pp. 29-41 (2003). Cheng, M. T., C. L. Horng, Y. R. Su, L. K. Lin, Y. C. Lin and C. C. K. Chou, “Particulate Matter Characteristics during Agricultural Waste Burning in Taichung City, Taiwan,” Journal of Hazardous Materials, Vol. 165, No. 1-3, pp. 187-192 (2009). Chio, C. P., M. T. Cheng and C. F. Wang, “Source Apportionment to PM10 in Different Air Quality Conditions for Taichung Urban and Coastal Areas, Taiwan,” Atmospheric Environment, Vol. 38, pp. 6893-6905 (2004). Chow, J. C., J. G. Watson, D. H. Lowenthal, L. W. A. Chen, B. Zielinska, L. R. Rinehart, and K. L. Magliano, “Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite,” Atmospheric Chemistry & Physics, Vol. 7, No. 7, pp. 1741-1754 (2007). Colbeck, I. and R. M. Harrison, “Ozone-econdary aerosol- visibility relationships in North-West England,” The Science of the Total Environment., Vol. 34, pp. 87-100 (1984). Councell, T. B., D. Keau, L. Edwardr and C. Edward, “Tire-Wear Particles as a Source of Zinc to the Environment,” Environment Science Technology, Vol. 38, pp. 4206-4214 (2004).- Fang, G. C., Y. S. Wu, J. C. Chen, J. Y. Rau, S. H. Huang and C. K. Lin, “Concentrations of Ambient Air Particulates (TSP, PM2.5 and PM2.5-10) and Ionic Species at Offshore Areas Near Taiwan Strait,” Journal of Hazardous Materials, Vol. 132, pp. 269-276 (2006). Gertler, A.W., D.A. Lowenthal, and W.G. Coulombe, “PM10 Source Apportionment Study in Bullhead City,Arizona,” J. Air Waste Manage. Assoc.,Vol. 45, pp. 75-82 (1995). Gupta, A. K., K. Karar and A. Srivastava, “Chemical Mass Balance Source Apportionment of PM10 and TSP in Residential and Industrial Sites of an Urban Region of Kolkata, India,” Journal of Hazardous Materials, Vol. 142, pp. 279-287 (2007). Jianxin, Y., R. M. Harrison, Q. Chen, A. Rutter and J. J. Schauer, “Source apportionment of fine particles at urban background and rural sites in the UK atmosphere,” Atmospheric Environment, Vol. 44, pp. 841-851 (2010). Kim, J. Y., C. H. Song, Y. S. Ghim, J. G. Won, S. C. Yoon, G. R. Carmichael and J. H. Woo, “An Investigation on NH3 Emissions and Particulate NH4+-NO3- Formation in East Asia,” Atmospheric Environment, Vol. 40, pp. 2139-2150 (2006). Kuo, C. Y., P. T. Chen, Y. C. Lin, C. Y. Lin, H. H. Chen and J. F. Shih, “Factors Affecting the Concentrations of PM10 in Central Taiwan,” Chemosphere, Vol. 70, No. 7, pp. 1273-1279 (2008). Mori, I., N. Masataka, T. Toshifumi and Q. Hao, “Change in Size Distribution and Chemical Composition of Kosa (Asian Dust) Aerosol During Long-range Transport,” Atmospheric Environment, Vol. 37, pp. 4253-4263 (2003). Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, Vol. 24A, pp. 815-822 (1990). Ohta, S., M. Hori, S. Yamagata and N. Murao, “Chemical Characterization of Atmospheric Fine Particles in Sapporo with Determination of Water Content,” Atmospheric Environment, Vol. 32, pp. 1021-1025 (1998). Olmez, I., A. E. Sheffield, G. E. Gordon, J. E. Houck, L. C. Pritchett, J. A. Cooper, T. G. Dzubay and R. L. Bennett, “Compositions of Particles from Selected Sources in Philadelphia for Receptor Modeling Applications,” Journal of the Air and Waste Management Association, Vol. 38 pp.1392-1402 (1988). Olson, D. A., J. Turlington, R. M. Duvall, S. R. McDow, C. D. Stevens and R. Williams, “Indoor and outdoor concentrations of organic and inorganic molecular markers: Source apportionment of PM2.5 using low-volume samples,” Atmospheric Environment, Vol. 42, pp. 1742-1751 (2008). Samara, C., “Chemical Mass Balance Source Apportionment of TSP in a Lignite-Burning Area of Western Macedonia, Greece,” Atmospheric Environment , Vol. 39, pp. 6430-6443 (2005). Schauer, J. J., “Evaluation of elemental carbon as a marker for diesel particulate matter,” Journal of Exposure Analysis and Environmental Epidemiology, Vol. 13, pp. 443-453 (2003). Seinfeld, J. H. and S. N. Pandis, “Atmospheric Chemistry and Physics:From Air Pollution to Climate Change,” A Wiley-Interscience Publication, (1998). Srivastava, A. and V. K. Jain, “Seasonal Trends in Coarse and Fine Particle Sources in Delhi by The Chemical Mass Balance Receptor Model,” Journal of Hazardous Materials, Vol. 144, pp. 283-291 (2007). Tsai, Y. I. and C. L. Chen, “Characterization of Asian Dust Storm and Non-Asian Dust Storm PM2.5 Aerosol in Southern Taiwan,” Atmospheric Environment, Vol. 40, pp. 4734-4750 (2006). Tsai, Y. I. and C. L. Chen, “Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan,” Atmospheric Environment, Vol. 40, pp. 4751-4763 (2006). Tsai, Y. I. and M. T. Cheng, “Characterization of Chemical Species in Atmospheric Aerosols in a Metropolitan Basin,” Chemosphere, Vol. 54, pp. 1171-1181 (2004). Turpin, B. J., and J. J. Huntzicker, “Secondary Formation of Organic Aerosol in the Los Angeles Basin: A Descriptive Analysis of Organic and Elemental Carbon Concentrations,” Atmospheric Environment, Vol. 25A, pp. 207-215 (1991). U.S. EPA, Receptor Model Source Composition Library. Environmental Protection Agency Research Triangle Park , NC , Report No. EPA-450/4-85-002 (1984). U.S. EPA, Receptor Model Technical Series Volume III: CMB7 User’s Manual. Environmental Protection Agency Research Triangle Park , NC , Report No. EPA-450/4-90-004. (1989). Wang, C. C., C. T. Lee, S. C. Liu, and J. P. Chen, “Aerosol Characterization at Taiwan''s Northern Tip During Ace-Asia,” TAO, Vol. 15, No.5, pp. 839-855 (2004). Wang, C. F., P. C. Chiang, M. T. Cheng and H. L. Chiang, “Improvement of Receptor Model Use in Analytical Aspect,” Atmospheric Environment, Vol. 41, pp. 9146-9158 (2007). Wang, H., and D. Shooter, “Coarse–fine and day–night differences of water-soluble ions in atmospheric aerosols collected in Christchurch and Auckland, NewZealand,” Atmospheric Environment, Vol. 36, pp. 3519-3529 (2002). Wang, C. F., P. C. Chiang, M. T. Cheng and H. L. Chiang, “Improvement of Receptor Model Use in Analytical Aspect,” Atmospheric Environment, Vol. 41, pp. 9146-9158 (2007). Wang, W. C., K. S. Chen, S. J. Chen, C. C. Tsai, J. H. Lai and S. K. Wang, “Characteristics and Receptor Modeling of Atmospheric PM2.5 at Urban and Rural Sites in Pingtung, Taiwan,” Aerosol and Air Quality Research, Vol. 8 , pp. 112-129 (2008). Ward, T. J. and G. C. Smith, “The 2000/2001 Missoula Valley PM2.5 Chemical Mass Balance Study, Including the 2000 Wildfire Season—Seasonal Source Apportionment,” Atmospheric Environment , Vol. 39, pp. 709-717 (2005). Watson, J. G., “Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Suspended Particulate Matter in Portland, Oregon,” Ph.D. Dissertation, Oregon Graduate Center, Beaverton, Oregon (1979). Watson, J. G., J. C. Chow, D. H. Lowenthal, L. C. Pritchett, C. A. Frazier, G. R. Neuroth and R. Robbins, “Differences in The Carbon Composition of Source Profiles for Diesel and Gasoline Powered Vehicles,” Atmospheric Environment. Vol. 28, pp. 2493-2505. (1994). Watson, J. G., N. F. Robinson, C. Lewis, T. Coulter, J. C. Chow, E. M. Fujita, D. H. Lownethal, T. L. Conner, R. C. Henry and R. D. Willis, “Chemical Mass Balance Receptor Model Version 8 User’s Manual,” Desert Research Institute Document No. 1808.1D1 (1997). Watson, J. G., N. F. Robinson, J. C. Chow, R. C. Henry, B. M. Kim, T. G. Pace, E. L. Meyer and Q. Nguyen, “The USEPA/DRI Chemical Mass Balance Receptor Model, CMB 7.0,” Environmental Software, Vol. 5, pp. 38-49 (1990). Yang, H. H., C. H. Tsai, M. R. Chao, Y. L. Su, and S. M. Chien, “Source Identification and Size Distribution of Atmospheric Polycyclic Aromatic Hydrocarbons During Rice Straw Burning Period,” Atmospheric Environment, Vol.40, pp. 1266-1274 (2006). Yatkin, S. and A. Bayram, “Source Apportionment of PM10 and PM2.5 Using Positive Matrix Factorization and Chemical Mass Balance in Izmir, Turkey,” The Science of the Total Environment, Vol. 390 , pp. 109-123 (2008). Zheng. M., L. G. Salmon, J. J. Schauer, L. Zeng, C. S. Kiang, Y. Zhang and G. R. Cass, “Seasonal trends in PM2.5 source contributions in Beijing, ” Atmospheric Environment, Vol. 39, pp. 3967-3976 (2005). 丁偉諭,「台中都會區酸性氣體空氣污染物之季節性變化」,碩士論文,國立中興大學環境工程研究所,台中(2003)。 台灣電力公司,「火力發電廠煙道氣粒狀物特性研究」,台灣電力公司八十七年度研究發展專題報告,(1998)。 王秋森,行政院國家科學委員會,專題研究計畫「石化工廠產生的粒狀空氣污染物的受體模式之建立」研究計畫報告,NSC-83-0421-B-002-318Z,(1994)。 王景良,「中部空品區污染源逸散粉塵的組成份析」,碩士論文,國立中興大學環境工程研究所,台中,(2000)。 李建翰,「應用CMB受體模式解析鹿港及二林地區大氣懸浮微粒的污染源貢獻量」,碩士論文,國立中興大學環境工程學系,台中(2009)。 邱嘉斌,「台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究」,博士論文,國立中興大學環境工程學系,台中(2005)。 許美華,「應用CMB受體模式解析中台灣沿海與都會區空氣懸浮微粒污染來源」,碩士論文,國立中興大學環境工程學系,台中(2008)。 陳紀綸,「台中港地區大氣懸浮微粒污染來源分析」,碩士論文,國立中興大學環境工程研究所,台中,(1999)。 楊宏隆,「大氣懸浮微粒PM2.5及PM2.5-10之特性及來源分析」,碩士論文,國立中興大學環境工程研究所,台中,(1998)。 鄭曼婷、程萬里、張艮輝、林沛練、莊秉潔、王竹方、郭崇義、林宗嵩、王重傑、黃景祥、白曛綾,「中部地區空氣污染總量管制技術資料建立與應用」,行政院環境保護署研究報告,EPA-89-FA11-03-231 (2000)。 藍文農,「台灣中部地區大氣有機碳及元素碳微粒之特性研究」,碩士論文,國立中興大學環境工程研究所,台中,(2002)。
摘要: 本研究主要探討台中及南海地區的大氣懸浮微粒之化學組成,並探討其污染來源貢獻量。採樣方面係利用高量採樣器,於2009年8/14至8/19及11/4至11/7期間,在清水、大肚山、大里及豐原同步採集PM2.5及PM2.5-10樣本,後於2010年3/14至3/19期間,在行進於南海上的海研一號上採集PM2.5及PM2.5-10樣本,採集後的樣本再利用離子層析儀及元素分析儀分析水溶性陰陽離子、元素碳及有機碳含量,最後利用化學質量平衡(CMB)受體模式推估懸浮微粒的污染來源及其貢獻量。 研究結果顯示台中地區主要以含碳微粒、硫酸鹽、硝酸鹽及銨鹽為主要化學物種,而南海地區則以硫酸鹽、銨鹽、氯鹽及鈉鹽為主,兩地區的主要差異為前者受交通排放所影響,而後者受海洋環境的影響。其中台中地區含碳微粒及二次光化氣膠主要以大里及豐原測站所佔比例較高,CMB受體模式分析大里和豐原PM2.5中的交通排放的貢獻量分別為46~52%和43~57%,燃煤電廠貢獻量則以台中火力發電廠下風處的大肚山最為顯著,其貢獻量為1~2%,海鹽微粒則以沿海地區的清水測站最高,受體模式分析清水、大肚山及大里測站PM2.5-10中的海鹽貢獻量分別為12~16%、11~13%及8~10%。南海地區採樣期間3月16日正逢大陸沙塵暴過境,比較沙塵暴事件日與非沙塵暴日的大氣微粒特性成份,顯示長程傳送的沙塵造成大氣懸浮微粒的海鹽、地殼物質、硫酸鹽、硝酸鹽及金屬元素皆有明顯的上升。
This study mainly investigated the chemical compositions and the source apportionments of ambient particulates over Taichung area and South China Sea. PM2.5 and PM2.5-10 were sampled concurrently at Chinshui, Dadu Mountain, Dali and Fengyuan sites by using high volume air samplers during August 14 to 19 and November 4 to 7 in 2009. The aerosol sampling were also conducted on a ship named as the R/V Ocean Researcher I which sailed in the region of the South China Sea during March 14 to 19 in 2010. The collected samples were then further analyzed for water soluble ions, elemental carbon and organic carbon by using an ion chromatographer and an elemental analyzer. Finally a chemical mass balance receptor model was used to evaluate the source contributions. The results indicate that the particulates over Taichung area mainly consist of carbonaceous species, sulfate, nitrate and ammonium. However the major components for the samples collected over the South China Sea are sulfate, ammonium, chlorine and sodium. The main differences between these samples are due to the impact of more vehicular emissions in Taichung area and the ocean spray in the marine environment. Higher fractions of carbonaceous species and secondary photochemical aerosols were observed at Dali and Fengyuan sites as compared to those measured at other two stations. Results of CMB modeling show that the main contributions to PM2.5 at Dali and Fengyuan are 46 ~ 52% and 43 ~ 57%, respectively from vehicular emissions. The contributions by coal-fired power plants are approximately 1 ~ 2% for the PM2.5 samples collected in Dadu Mountain site which located at the downwind region of the power plant. Higher sea-salt species were found in the samples collected at Chinshui site. CMB modeling show that the sea-salt contributions to PM2.5-10 at Chinshui, Dadu Mountain and Dali sites are 12 ~ 16%, 11 ~ 13% and 8 ~ 10%, respectively. During the sampling over the South China Sea, an episodic event due to the passage of a dust storm from China was observed on March 16, 2010. Comparisons between the compositions of particulates collected in the episodic and non-episodic events indicate that the dust storm increases the contents of sea-salt, crustal material, sulphate, nitrate and metallic elements significantly.
URI: http://hdl.handle.net/11455/5743
其他識別: U0005-1208201014131800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208201014131800
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。