Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5748
標題: 鹿港和二林地區大氣懸浮微粒的化學組成及揚塵污染源指紋資料之建立
Source Apportionment of Ambient Particulates at Lukang and Erlin Sites and an Establishment of the Dust Fingerprints
作者: 賴立蓁
Lai, Lee-Chen
關鍵字: PM2.5
PM2.5
PM2.5-10
Dust fingerprints
CMB receptor model
Lukang
Erlin
PM2.5-10
揚塵指紋
CMB受體模式
鹿港
二林
出版社: 環境工程學系所
引用: Bencs, L., K. Ravindra, J. D. Hoog, E. O. Rasoazanany, F. Deutsch, N. Bleux, P. Berghmans, E. Roekens, A. Krata and R. V. Grieken, “Mass and Ionic Composition of Atmospheric Fine Particles over Belgium and their Relation with Gaseous Air Pollutants,” Journal of Environmental Monitoring, Vol. 10, pp. 1148-1157 (2008). Chan, Y. C.,R. W. Simpson, G. H. Mctainsh, P. D. Vowles, D. D. Cohen and G. M. Bailey, “Source Apportionment of PM2.5 and PM10 Aerosols in Brisbane, Australia,” Atmospheric Environment, Vol. 33, pp. 3251-3268 (1999). Chen, K. S., C. F. Lin and Y. M. Chou, “Determination of Source Contributions to Ambient PM2.5 in Kaohsiung, Taiwan, Using a Receptor Model,” Journal of the Air and Waste Management Association, Vol. 51, pp. 489-498 (2001). Chen, W. C., C. S. Wang and C. C. Wei, “An Assessment of Source Contributions to Ambient Aerosols in Central Taiwan,” Journal of the Air and Waste Management Association, Vol. 47, pp. 501-509 (1997). Cheng, M. T., C. L. Horng, Y. R. Su, L. K. Lin, Y. C. Lin and C. C. K. Chou, “Particulate Matter Characteristics during Agricultural Waste Burning in Taichung City, Taiwan,” Journal of Hazardous Materials, Vol. 165, pp. 187-192 (2009). Cheng, Y., S. C. Lee, J. Cao, K. F. Ho, J. C. Chow, J. G. Watson and C. H. Ao, “Elemental Composition of Airborne Aerosols at a Traffic Site and a Suburban Site in Hong Kong,” International Journal of Environment and Pollution, Vol. 36, pp. 166-179 (2009). Cheng, M. T., C. P. Chio, C. Y. Huang, J. M. Chen, C. F. Wang and C. Y. Kuo, “Chemical Compositions of Fine Particulates Emitted from Oil-fired Boilers,” Journal of Environmental Engineering and Management, Vol. 18, pp. 355-362 (2008). Chiang, H. L. and Y. S. Huang, “Particulate Matter Emissions from on-road Vehicles in a Freeway Tunnel Study,” Atmospheric Environment, Vol. 43, pp. 4014-4022 (2009). Chio, C. P., M. T. Cheng and C. F. Wang, “Source Apportionment to PM10 in Different Air Quality Conditions for Taichung Urban and Coastal Areas, Taiwan,” Atmospheric Environment, Vol. 38, pp. 6893-6905 (2004). Chow, J. C., J. G. Watson, D. H. Lowenthal, L. W. A. Chen, B. Zielinska, L. R. Rinehart, and K. L. Magliano, “Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite,” Atmospheric Chemistry & Physics, Vol. 6, pp. 10341-10372 (2006). Colbeck, I. and M. Lazaridis, “Aerosols and Environmental Pollution,” Naturwissenschaften, Vol. 97, pp. 117-131 (2010). Colbeck, I. and R. M. Harrison, “Ozone-econdary aerosol- visibility relationships in North-West England,” The Science of the Total Environment., Vol. 34, pp. 87-100 (1984). Engling, G., J. J. Lee, Y. W. Tasi, S. C. Lung, C. K. Chou and C. Y. Chan, “Size-Segregated Characterization of Atmospheric Aerosols in Taipei During Asian Outflow Episodes,” Aerosol Science and Technology, Vol. 43, pp. 992-972 (2009). Fang, G. C., Y. S. Wu, J. C. Chen, J. Y. Rau, S. H. Huang and C. K. Lin, “Concentrations of Ambient Air Particulates (TSP, PM2.5 and PM2.5-10) and Ionic Species at Offshore Areas Near Taiwan Strait,” Journal of Hazardous Materials, Vol. 132, pp. 269-276 (2006). Fang, G. C. and J. F. Lee, “Study of Atmospheric Particulates and Metallic Pollutants in Harbor and Traffic Areas in Central Taiwan,” Environmental Engineering Science, Vol. 25, pp. 809-819 (2008). Galindo, N., J. F. Nicolás, E. Yubero, S. Caballero, C. Pastor and J. Crespo, “Factors Affecting Levels of Aerosol Sulfate and Nitrate on the Western Mediterranean Coast,” Atmospheric Research, Vol. 88, pp. 305-313 (2008). Getler, A.W., D.A. Lowenthal, and W.G. Coulombe, “PM10 Source Apportionment Study in Bullhead City, Arizona,” J. Air Waste Manage. Assoc., Vol. 45, pp. 75-82 (1995). Gupta, A. K., K. Karar and A. Srivastava, “Chemical Mass Balance Source Apportionment of PM10 and TSP in Residential and Industrial Sites of an Urban Region of Kolkata, India,” Journal of Hazardous Materials, Vol. 142, pp. 279-287 (2007). Henry, R. C. and G. M. Hidy, “Multivariate Analysis of Particulate Sulfate and other Air Quality Variables by Principle Components-Part I: Annual Data from Los Angeles and New York,” Atmospheric Environment, Vol. 13, pp. 1581-1596 (1979). Hsu, S. C., S. C. Liu, C. Y. Lin, R. T. Hsu, Y. T. Huang and Y. W. Chen, “Metal Compositions of PM10 and PM2.5 Aerosols in Taipei during Spring, 2002,” Terrestrial, Atmospheric and Oceanic Sciences, Vol. 15, pp. 925-948 (2004). Hsu, S. C., S. C. Liu, Y. T. Huang, C. C. K. Chou, C. S. C. Lung, T. H. Liu, J. Y. Tu and F. Tsai, “Long-range Southeastward Transport of Asian Biosmoke Pollution: Signature Detected by Aeroso l Potassium in Northern Taiwan,” Journal of Geophysical Research, Vol. 114, D14301, doi:10.1029/2009JD011725 (2009). Kampa, M. and E. Castanas, “Human Health Effects of Air Pollution,” Environmental Pollution, Vol. 151, pp. 362-367 (2008). Kuo, C. Y., P. T. Chen, Y. C. Lin, C. Y. Lin, H. H. Chen and J. F. Shih, “Factors Affecting the Concentrations of PM10 in Central Taiwan,” Chemosphere, Vol. 70, pp. 1273-1279 (2008). Kuo, S. C., L. Y. Hsieh, C. H. Tsai and Y. I. Tsai, “Characterization of PM2.5 Fugitive Metal in the Workplaces and the Surrounding Environment of a Secondary Aluminum Smelter,” Atmospheric Environment, Vol. 41, pp. 6884-6900 (2007). Lin, Y. C., M. T. Cheng, C. P. Chio and C. Y. Kuo, “Carbonaceous Aerosol Measurements at Coastal, Urban and Inland Sites in Central Taiwan,” Environmental Forensics, Vol. 10, pp. 7-17 (2009). Meng J. F. and J. H. Seinfeld, “Time Scales to Achieve Atmospheric Gas-Aerosol Equilibrium for Volatile Species,” Atmospheric Environment, Vol. 30, pp. 2889-2900 (1996). Miller, M. S., Friedlander, S. K. and Hidy, G. M., “A Chemical Element Balance for the Pasadena Aerosol,” Journal of Colloid Interface Science, Vol.39, pp. 165-176 (1972) Moreno, T., A. Alastuey, X. Querol, O. Font and W. Gibbons, “The Identification of Metallic Elements in Airborne Particulate Matter Derived from Fossil Fuels at Puertollano, Spain,” International Journal of Coal Geology, Vol. 71, pp. 122-128 (2007). Mori, I., N. Masataka, T. Toshifumi and Q. Hao, “Change in Size Distribution and Chemical Composition of Kosa (Asian Dust) Aerosol During Long-range Transport,” Atmospheric Environment, Vol. 37, pp. 4253-4263 (2003). Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, Vol. 24A, pp. 815-822 (1990). Okuda, T., M. Katsuno, D. Naoi, S. Nakao, S. Tanaka, K. He, Y. Ma, Y. Lei and Y. Jia, “Trends in Hazardous Trace Metal Concentrations in Aerosols Collected in Beijing, China from 2001 to 2006,” Chemosphere, Vol. 72, pp. 917-924 (2008). Olmez, I., A. E. Sheffield, G. E. Gordon, J. E. Houck, L. C. Pritchett, J. A. Cooper, T. G. Dzubay and R. L. Bennett, “Compositions of Particles from Selected Sources in Philadelphia for Receptor Modeling Applications,” Journal of the Air and Waste Management Association, Vol. 38 pp.1392-1402 (1988). Querol, X., M. Viana, A. Alastuey, F. Amato, T. Moreno, S. Castillo, J. Pey, J. de la Rosa, A. Sánchez de la Campa, B. Artíñano, P. Salvador, S. García Dos Santos, R. Fernández-Patier, S. Moreno-Grau, L. Negral, M. C. Minguillón, E. Monfort, J. I. Gil, A. Inza, L. A. Ortega, J. M. Santamaría and J. Zabalza, “Source Origin of Trace Elements in PM from Regional Background, Urban and Industrial Sites of Spain,” Atmospheric Environment, Vol. 41, pp. 7219-7231 (2007). Rahn, K. A., “A Graphical Technique for Determining Major Components in a Mixed Aerosol. I. Descriptive Aspects,” Atmospheric Environment, Vol. 33, No. 9, pp. 1441-1455 (1999). Seinfeld, J. H. and S. N. Pandis, “Atmospheric Chemistry and Physics: From Air Pollution to Climate Change,” A Wiley-Interscience Publication, (1998). Sharma, M., A. K. Agarwal and K. V. L. Bharathi, “Characterization of exhaust particulates from diesel engine,” Atmospheric Environment, Vol. 39, pp. 3023-3028 (2005). Stortini, A. M., A. Freda, D. Cesari, W. R. L. Cairns, D. Contini, C. Barbante, F. Prodi, P. Cescon and A. Gambaro, “An Evaluation of the PM2.5 Trace Elemental Composition in the Venice Lagoon Area and an Analysis of the Possible Source,” Atmospheric Environment, Vol. 43, pp. 6296-6304 (2009). Taylor, S. R., “Abundance of Chemical Elements in the Continental Crust: a New Table,” Geochimica et Cosmichimica Acta, Vol. 28, pp. 1273-1285 (1964). Tsai, J. H., K. H. Lin, C. Y. Chen, J. Y. Ding, C. G. Choa and H. L. Chiang, “Chemical Constituents in Particulate Emissions from an Integrated Iron and Steel Facility,” Journal of Hazardous Materials, Vol. 147, pp. 111-119 (2007). Tasi, Y. I. and C. L. Chen, “Atmospheric Aerosol Composition and Source Apportionments to Aerosol in Southern Taiwan,” Atmospheric Environment, Vol. 40, pp. 4751-4763 (2006). Terzi, E., G. Argyropoulos, A. Bougatioti, N. Mihalopoulos, K. Nikolaou and C. Samara, “Chemical Composition and Mass Closure of Ambient PM10 at Urban Sites,” Atmospheric Environment, Vol. 44, pp. 2231-2239 (2010). Thorpe, A. and R. M. Harrison, “Sources and Properities of Non-exhaust Particulate Matter from Road Traffic: a Review,” Science of the Total Environment, Vol. 400, pp. 270-282 (2008). Thurston, G. D. and P. J. Lioy, “Receptor Modeling and Aerosol Transport,” Atmospheric Environment, Vol. 21, pp. 687-698 (1987). Turpin, B. J., and J. J. Huntzicker, “Secondary Formation of Organic Aerosol in the Los Angeles Basin: A Descriptive Analysis of Organic and Elemental Carbon Concentrations,” Atmospheric Environment, Vol. 25A, pp. 207-215 (1991). U.S. EPA, Receptor Model Technical Series Volume III: CMB7 User’s Manual. Environmental Protection Agency Research Triangle Park , NC , Report No. EPA-450/4-90-004. (1989). U.S. EPA, Receptor Model Source Composition Library. Environmental Protection Agency Research Triangle Park , NC , Report No. EPA-450/4-85-002 (1984). Vega, E., D. Lowenthal, H. Ruiz, E. Reyes, J. G. Wason, J. C. Chow, M. Viana, X. Querol and A. Alastuey, “Fine Particle Receptor Modeling in the Atmosphere of Mexico City,” Air &Waste Management, Vol. 59, pp.1417-1428 (2009). Viana, M., W. Maenhaut, X. Chi, X. Querol and A. Alastuey, “Comparative Chemical Mass Closure of Fine and Coarse Aerosols at Two Sites in South and West Europe: Implications for EU Air Pollution Policies,” Atmospheric Environment, Vol. 41, pp. 315-326 (2007). Wåhlin, P., R. Berkowicz and F. Palmgren, “Characterization of Traffic-generated Particulate Matter in Copenhagen,” Atmospheric Environment, Vol. 40, No. 12, pp. 2151-2159 (2006). Wang, C. F., C. Y. Chang, S. F. Tsai and H. L. Chiang, “Characteristics of Road Dust from Different Sampling Sites in Northern Taiwan,” Journal of the Air & Waste Management Association, Vol. 55, pp. 1236-1244 (2005). Wang, C. F., P. C. Chiang, M. T. Cheng and H. L. Chiang, “Improvement of Receptor Model Use in Analytical Aspect,” Atmospheric Environment, Vol. 41, pp. 9146-9158 (2007). Wang, W. C., K. S. Chen, S. J. Chen, C. C. Tsai, J. H. Lai and S. K. Wang, “Characteristics and Receptor Modeling of Atmospheric PM2.5 at Urban and Rural Sites in Pingtung, Taiwan,” Aerosol and Air Quality Research, Vol. 8 , pp. 112-129 (2008). Ward, T. J. and G. C. Smith, “The 2000/2001 Missoula Valley PM2.5 Chemical Mass Balance Study, Including the 2000 Wildfire Season—Seasonal Source Apportionment,” Atmospheric Environment , Vol. 39, pp. 709-717 (2005). Watson, J. G., J. C. Chow, D. H. Lowenthal, L. C. Pritchett, C. A. Frazier, G. R. Neuroth and R. Robbins, “Differences in The Carbon Composition of Source Profiles for Diesel and Gasoline Powered Vehicles,” Atmospheric Environment. Vol. 28, pp. 2493-2505. (1994b). Watson, J. G., J. C. Chow and T. G. Pace, Chemical Mass Balance. In: Hopke P. K. Eds. Receptor modeling for air quality management. pp. 83-116 (1991). Watson, J. G., “Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Suspended Particulate Matter in Portland, Oregon,” Ph.D. Dissertation, Oregon Graduate Center, Beaverton, Oregon (1979). Watson, J. G., N. F. Robinson, J. C. Chow, R. C. Henry, B. M. Kim, T. G. Pace, E. L. Meyer and Q. Nguyen, “The USEPA/DRI Chemical Mass Balance Receptor Model, CMB 7.0,” Environmental Software, Vol. 5, pp. 38-49 (1990). Watson, J. G., N. F. Robinson, C. Lewis, T. Coulter, J. C. Chow, E. M. Fujita, D. H. Lownethal, T. L. Conner, R. C. Henry and R. D. Willis, “Chemical Mass Balance Receptor Model Version 8 User’s Manual,” Desert Research Institute Document No. 1808.1D1 (1997). Xie, R., H. M. Seip, G. Wibetoe, S. Nori and C. W. McLeod, “Heavy Coal Combustion as the Dominant Source of Particulate Pollution in Taiyuan, China, Corroborated by High Concentrations of Arsenic and Selenium in PM10,” Science of the Total Environment, Vol. 370, pp. 409-415 (2006). Yatkin, S. and A. Bayram, “Source Apportionment of PM10 and PM2.5 Using Positive Matrix Factorization and Chemical Mass Balance in Izmir, Turkey,” The Science of the Total Environment, Vol. 390 , pp. 109-123 (2008). Zheng. M., L. G. Salmon, J. J. Schauer, L. Zeng, C. S. Kiang, Y. Zhang and G. R. Cass, “Seasonal trends in PM2.5 source contributions in Beijing, ” Atmospheric Environment, Vol. 39, pp. 3967-3976 (2005). Seinfeld, J. H., “Atmospheric Chemistry and Physiccs of Air Pollution,”John Wiley & Sons, Inc., New York, pp.348 (1986). 李建翰,「應用CMB受體模式解析鹿港及二林地區大氣懸浮微粒的污染源貢獻量」,碩士論文,國立中興大學環境工程學系,台中(2009)。 曾嘉汝,「鹿港和二林地區大氣懸浮微粒元素組成之研究」,碩士論文,國立中興大學環境工程學系,台中(2009)。 許美華,「應用CMB受體模式解析中台灣沿海與都會區空氣懸浮微粒污染來源」,碩士論文,國立中興大學環境工程學系,台中(2008)。 高滄志,「濁水溪南岸之季風懸浮微粒來源追蹤及空氣品質影響研究」,碩士論文,大葉大學環境工程學系,彰化(2006) 許文國,「裸露地PM10排放特性及植生效益評估之研究」,碩士論文,國立台北科技大學環境規劃與管理研究所,台北(2005)。 邱嘉斌,「台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究」,博士論文,國立中興大學環境工程學系,台中(2005)。 黃信文,「大型裸露地PM10防治措施效率及其施用效益之研究-以稻草鋪蓋為例」,碩士論文,國立台北科技大學環境規劃與管理研究所,台北(2004)。 陳昭忞,「重油鍋爐煙道排放之PM2.5及PM10微粒的特性及化學組成」, 碩士論文,國立中興大學環境工程學系,台中(2002)。 藍文農,「台灣中部地區大氣有機碳及元素碳微粒之特性研究」,碩士論文,國立中興大學環境工程研究所,台中(2002)。 王景良,「中部空品區污染來源逸散粉塵的組成分析」,碩士論文,國立中興大學環境工程學系,台中(2000)。 楊宏隆,「大氣懸浮微粒PM2.5及PM2.5-10之特性及來源分析」,碩士論文,國立中興大學環境工程學系,台中(1998)。 郭崇義,「河川揚塵對中部大氣懸浮微粒影響程度之評估」,行政院環保署期末報告,EPA-97-FA14-03-A042(2008)。 台灣電力公司,「火力發電廠煙道氣粒狀物特性研究」,台灣電力公司八十七年度研究發展專題報告,(1998)。 王秋森,「石化工廠產生的粒狀空氣污染物的受體模式之建立」行政院國家科學委員會研究計畫報告,NSC-83-0421-B-002-318Z(1994)。 行政院環境保護署,台灣空氣污染排放清冊資料庫,TEDS 7.0版(2009)。網站: http://www.ctci.com.tw/air-ei/new_main2-0.htm。 中央氣象局網站: http://www.cwb.gov.tw/ (2009)
摘要: 本研究利用高量採樣器分別於2009年8月25日至31日及2010年1月20日至30日在鹿港及二林地區採集PM2.5與PM2.5-10微粒樣本,分析其化學組成,並建立濁水溪及二林裸露地揚塵之指紋資料,再以化學質量平衡(CMB)受體模式分析污染源之貢獻量,然後彙整2008年11月24日至12月7日及2009年4月27日至5月3日的採樣結果,探討此兩地區PM2.5及PM2.5-10的特性、污染源貢獻量及季節性變化。 四季的分析結果,兩地區PM10微粒主要含SO42-、NH4+、有機碳、NO3-及元素碳,PM2.5和PM2.5-10微粒中SO42-、NO3-及NH4+分別佔無機鹽類約92 %及58 %,其中PM2.5微粒以夏季SO42-含量最高,主要受光化反應的影響,而地殼元素(Al、Fe、Ca、Na、Mg及K)以秋末濃度為最高。東北季風盛行期間,鹿港地區之PM2.5中As、Se高於其他季節,可能受上風處火力發電廠排放的影響。 揚塵指紋建立方面,濁水溪河床及二林裸露地的揚塵約92 %的質量在粗粒徑範圍,其地殼元素以Al、Fe、K和Ca為主,與鋪面街塵及營建粉塵的指紋相比,濁水溪河床及二林裸露地受人為影響較少。 CMB受體模式推估結果,鹿港及二林地區的PM2.5之污染源,二次氣膠四季平均佔50 %、交通排放佔30 %及燃煤電廠約3 %,PM2.5-10中地殼物質平均佔40 %、交通排放佔35 %及海鹽飛沫約6 %。主成分因子分析結果與CMB結果相符,其懸浮微粒主要受交通排放、地殼物質、燃煤電廠及海鹽的影響。至於秋末揚塵污染嚴重的事件日,其PM2.5-10 中地殼物質的貢獻可達65 %以上,明顯較平常貢獻量40 %為高。
In this study, PM2.5 and PM2.5-10 were sampled at Lukang and Erlin sites by using high volume samplers during August 8 to 31 in 2009 and January 20 to 30 in 2010. Chemical compositions of the aerosol samples were then analyzed. In addition, fingerprints of Zhuoshuixi river-bed dust and Erlin soil dust were established in order to use a chemical mass balance (CMB) receptor model to apportion the sources of PM2.5 and PM2.5-10 in the studied areas. These sampling results were finally combined with those sampled during November 24 to December 7 in 2008 and April 27 to May 3 in 2009 for studying the characteristics, apportions of pollution sources, and seasonal variations of the particulates at Lukang and Erlin. Based on the results obtained in these four seasons, PM10 mainly contained SO42-, NH4+, organic carbon (OC), NO3-, and elemental carbon (EC). Totally SO42-, NO3-, and NH4+ were 92 % and 58 % in the inorganic species of PM2.5 and PM2.5-10, respectively. The abundance of SO42- in PM2.5 was highest in summer because of the effect of photochemical reactions. However, the crustal elements (Al, Fe, Na, Mg, K, and Ca) were higher in autumn. During the north-eastern monsoon season, As and Se in PM2.5 at Lukang were higher than the other seasons which indicated the influence by a thermal power plant located in the north of Lukang sampling site. Regarding the dust fingerprints of Zhuoshuixi river-bed dust and Erlin soil dust, there were approximately 92 % of mass in PM2.5-10. The crustal elements were mainly Al, Fe, K, and Ca. The comparison between there and those from paved road dust and construction emitted dust indicated that the Zhuoshuixi river-bed dust and Erlin soil dust contained significantly less anthropogenic species. CMB modeling results showed the sources of PM2.5 at these sampling sites were about 50 % from secondary aerosols, 30 % from vehicular emissions and 3 % from a coal-fired power plant. There were about 40 % of PM2.5-10 from the crustal elements, 35 % from vehicular emissions and 6 % from marine spray. Similarly, principal component factor analyses were consistent with those obtained by using CMB modeling. Both methods showed the particulates were mainly influenced by vehicular emissions, crustal elements, coal-fired power plant and marine spray. Regarding the episodic event caused by the wind blown dust, the contribution from of crustal elements had reached above 65 % in PM2.5-10 which were significant higher than the average 40 % contribution.
URI: http://hdl.handle.net/11455/5748
其他識別: U0005-1307201020422300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1307201020422300
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.