Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5753
標題: 高分子薄膜與多層複合薄膜氣體分離特性之研究
Preparation and characterization of polymer & multi-layer composite membranes for gas separation
作者: 翁子翔
Weng, Tzu-Hsiang
關鍵字: Blend membrane
混合薄膜
Permeability
Selectivity
Crosslinking
d-spacing
滲透率
選擇率
交聯
層間距離
出版社: 環境工程學系所
引用: 參考文獻 [1] 胡蒨傑,魏大欽,“21 世紀的新森林-氣體分離薄膜”科學發展, 2008;429:32-7. [2] Mulder M. Basic principles of membrane technology. Kluwer Academic Publishers, Netherlands 1997. [3] Graham T. On the absorption and dialytic separation of gases by colloid septa. Phil. Magazine. 1866;32:401-20. [4] Stern SA. Polymers for gas separations: the next decade. J. Memb. Sci. 1994;94(1):1-65. [5] Staudt-Bickel C, Koros JW. Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking. J. Memb. Sci. 1999;155(1):145-54. [6] Sridhar S, Suryamurali R, Smitha B, Aminabhavi TM. Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation. Colloid Surf. A-Physicochem. Eng. Asp. 2007;297(1-3):267-74. [7] Baker RW. Membrane technology and application. California: Mcgraw-Hill Companies 2000. [8] Pandey P, Chauhan RS. Membranes for gas separation. Prog. Polym. Sci. 2001;26(6):853-93. [9] Kesting RE, Fritzache AK. "Polymeric Gas Separation Memebrane" JOHN WILEY &SOS, Inc, New York 1993. [10] Ho WWS, Sirkar KK. Memrane Handbook Van Nostrand Reinhold, New York 1992 [11] Vieth WR. Diffusion In and Through Polymers Oxford University press New York 1991:73-8. [12] Rutherford SW, DO DD. Review of time lag permeation technique as a method for characterisation of porous media and membranes Adsorption 1997;3:283-312. [13] Puleo AC, Murugandam N, Paul DR. Gas Sorption and Transport in Subistituted Polystyrene. J. Polym. Sci. Pt. B-Polym. Phys. 1989;27:2385-406. [14] De V, Naylor T. The synthesis characterization reactions and applications. New York: comprehensive Polymer science, Dergman Press 1989. [15] McCaig MS, Paul DR. Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part I. Experimental observations. Polymer. 2000;41(2):629-37. [16] Lundberg RD, Makowski HS. A comparison of sulfonate and carboxylate ionomers. Polymer Preprints. 1978;19(2):287-92. [17] Tomita H, Register RA. Morphology of lightly carboxylated polystyrene ionomers. Marcomolecules. 1993;26:2791-5. [18] Claudia SB, William JK. Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking. J. Memb. Sci. 1999;155(1):145-54. [19] Huang MR, Xu QW, Gu SY, Wu YH, Dong ZQ, Shao J, et al. Oxygen enrichment across blend membranes of bipyridine and ethyl cellulose. J. Appl. Polym. Sci. 2003;87:1371-81. [20] Li XG, Huang MR, Lu YQ, Zhu MF. Synthesis and properties of processible copolymer microparticles from chloroanilines and aniline. J. Mater. Chem. 2005;15:1343-52. [21] Tin PS, Chung TS, Liu Y, Wang R, Liu SL, Pramoda KP. Effects of cross-linking modification on gas separation performance of Matrimid membranes. J. Memb. Sci. 2003;225(1-2):77-90. [22] Nakagawa T, Taikei MG. Encyclopedia of membrane separation technology. Fuji Technosystem Tokyo. 1991;1:28. [23] López-González MM, Compan V, Saiz E, Riande E, Guzmán J. Effect of the upstream pressure on gas transport in poly(ether-imide) films. J. Memb. Sci. 2005;253(1-2):175-81. [24] Sridhar S, Smitha B, Ramakrishna M, Aminabhavi TM. Modified poly(phenylene oxide) membranes for the separation of carbon dioxide from methane. J. Memb. Sci. 2006;280(1-2):202-9. [25] Chowdhury G, Vujosevic R, Matsuura T, Laverty B. Effects of polymer molecular weight and chemical modification on the gas transport properties of poly(2,6-dimethyl-1,4-phenylene oxide). J. Appl. Polym. Sci. 2000;77:1137-43. [26] McHattie JS, Koros WJ, Paul DR. Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings. Polymer. 1991;32(5):840-50. [27] Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. J. Memb. Sci. 1991;62(2):165-85. [28] Hamad F, Khulbe KC, Matsuura T. Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes. J. Memb. Sci. 2005;256(1-2):29-37. [29] Kim K-J, Park S-H, So W-W, Ahn D-J, Moon S-J. CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group. J. Memb. Sci. 2003;211(1):41-9. [30] Wang D, Li K, Teo WK. Preparation of asymmetric polyetherimide hollow fibre membrane with high gas selectivities. J. Memb. Sci. 2002;208(1-2):419-26. [31] Robeson LM. The upper bound revisited. J. Memb. Sci. 2008;320(1-2):390-400. [32] Robeson LM. Polymer membranes for gas separation. Curr. Opin. Solid State Mat. Sci. 1999;4(6):549-52. [33] 周宗華,高分子材料:新文京開發出版有限公司 2002 [34] Mulder M. "Basic Principles of Membrane Technology". Kluwer Academic Publishers, Londen, Chap 2 and Chap 5,. 1991. [35] 王建智,製膜溶劑對聚(1-三甲基矽烷-1-丙炔)膜之氣體滲透性隨時間下降行為的影響,元智大學化學工程所,碩士論文2001 [36] McCaig MS, Paul DR, Barlow JW. Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical agingPart II. Mathematical model. Polymer. 2000;41(2):639-48. [37] 蔡信行,聚合物化學:新文京開發出版股份有限公司 2004 [38] Bhole YS, Karadkar PB, Kharul UK. Nitration and amination of polyphenylene oxide: Synthesis, gas sorption and permeation analysis. Eur. Polym. J. 2007;43(4):1450-9. [39] Kurdi J, Tremblay AY. Preparation of defectfree asymmetric membrane for gas separations. J. Appl. Polym. Sci. 1999;73:1471-82. [40] Huang S-H, Hu C-C, Lee K-R, Liaw D-J, Lai J-Y. Gas separation properties of aromatic poly(amide-imide) membranes. Eur. Polym. J. 2006;42(1):140-8. [41] Acharya NK, Kulshrestha V, Awasthi K, Jain AK, Singh M, Vijay YK. Hydrogen separation in doped and blend polymer membranes. Int. J. Hydrog. Energy. 2008;33(1):327-31. [42] Kapantaidakis GC, Kaldis SP, Dabou XS, Sakellaropoulos GP. Gas permeation through PSF-PI miscible blend membranes. J. Memb. Sci. 1996;110(2):239-47. [43] Kapantaidakis GC, Koops GH. High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation. J. Memb. Sci. 2002;204(1-2):153-71. [44] Li X-G, Kresse I, Springer Jg, Nissen J, Yang Y-L. Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Polymer. 2001;42(16):6859-69. [45] Yi C, Wang Z, Li M, Wang J, Wang S. Facilitated transport of CO2 through polyvinylamine/polyethlene glycol blend membranes. Desalination. 2006;193(1-3):90-6. [46] Johnson T, Thomas S. Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends. Polymer. 1999;40(11):3223-8. [47] Kim SH, Kim D, Lee DS. Gas permeation behavior of PS/PPO blends. J. Memb. Sci. 1997;127(1):9-15. [48] Dudley CN, Schöerl B, Sturgill GK, Beckham HW, Rezac ME. Influence of crosslinking technique on the physical and transport properties of ethynyl-terminated monomer/polyetherimide asymmetric membranes. J. Memb. Sci. 2001;191(1-2):1-11. [49] Anjali Devi D, Smitha B, Sridhar S, Aminabhavi TM. Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes. J. Memb. Sci. 2005;262(1-2):91-9. [50] Smitha B, Sridhar S, Murthy GS, Mayor SJ. Pervaporation of tertiary butanol/water mixtures through chitosan membranes crosslinked with toluylene diisocyanate. J. Chem. Tech. Biotech. 2005;80:1416-24. [51] Kita H, Inada T, Tanaka K, Okamoto K-i. Effect of photocrosslinking on permeability and permselectivity of gases through benzophenone- containing polyimide. J. Memb. Sci. 1994;87(1-2):139-47. [52] Matsui S, Ishiguro T, Higuchi A, Nakagawa T. Effect of Ultraviolet Light Irradiation on Gas Permeability in Polyimide Membranes. 1. Irradiation with Low Pressure Mercury Lamp on Photosensitive and Nonphotosensitive Membranes. J. Polym. Sci. Polym. Phys. 1997:2259-69. [53] Liu Y, Pan C, Ding M, Xu J. Effect of crosslinking distribution on gas permeability and permselectivity of crosslinked polyimides. Eur. Polym. J. 1999;35(9):1739-41. [54] Rao H-X, Liu F-N, Zhang Z-Y. Preparation and oxygen/nitrogen permeability of PDMS crosslinked membrane and PDMS/tetraethoxysilicone hybrid membrane. J. Memb. Sci. 2007;303(1-2):132-9. [55] Fuertes AB, Centeno TA. Preparation of supported carbon molecular sieve membranes. Carbon. 1999;37(4):679-84. [56] Singh-Ghosal A, Koros WJ. Air separation properties of flat sheet homogeneous pyrolytic carbon membranes. J. Memb. Sci. 2000;174(2):177-88. [57] Kim YK, Lee JM, Park HB, Lee YM. The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups. J. Memb. Sci. 2004;235(1-2):139-46. [58] Park HB, Kim YK, Lee JM, Lee SY, Lee YM. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes. J. Memb. Sci. 2004;229(1-2):117-27. [59] Tin PS, Chung T-S, Kawi S, Guiver MD. Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides. Microporous Mesoporous Mat. 2004;73(3):151-60. [60] Saracco G, Neomagus HWJP, Versteeg GF, Swaaij WPMv. High-temperature membrane reactors: potential and problems. Chem. Eng. Sci. 1999;54(13-14):1997-2017. [61] Caro J, Noack M, Kölsch P, Schäfer R. Zeolite membranes - state of their development and perspective. Microporous Mesoporous Mat. 2000;38(1):3-24. [62] Chung T-S, Jiang LY, Li Y, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007;32(4):483-507. [63] Hosseini SS, Li Y, Chung T-S, Liu Y. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. J. Memb. Sci. 2007;302(1-2):207-17. [64] Vital J, Ramos AM, Silva IF, Valente H, Castanheiro JE. Hydration of [alpha]-pinene over zeolites and activated carbons dispersed in polymeric membranes. Catal. Today. 2000;56(1-3):167-72. [65] Ciobanu G, Carja G, Ciobanu O. Preparation and characterization of polymer-zeolite nanocomposite membranes. Mater. Sci. Eng. C. 2007;27(5-8):1138-40. [66] Kim S, Pechar TW, Marand E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination. 2006;192(1-3):330-9. [67] Cong H, Zhang J, Radosz M, Shen Y. Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation. J. Memb. Sci. 2007;294(1-2):178-85. [68] Ai X, Hu X. Study on organic-inorganic hybrid membranes. Huxue Jinzhan. 2003;16:654-9. [69] Li C, Shao H, Zhong S. Preparation technology of organic-inorganic hybrid membrane. Huxue Jinzhan. 2003;16:83-9. [70] Genn I, Kuypers S, Leysen R. Effect of the addition of ZrO2 to polysulfone based UF membranes. J. Memb. Sci. 1996;113(2):343-50. [71] Wara NM, Francis LF, Velamakanni BV. Addition of alumina to cellulose acetate membranes. J. Memb. Sci. 1995;104(1-2):43-9. [72] Stephen R, Ranganathaiah C, Varghese S, Joseph K, Thomas S. Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer. 2006;47(3):858-70. [73] Mascia L, Zhang Z, Shaw SJ. Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship. Compos. Pt. A-Appl. Sci. Manuf. 1996;27(12):1211-21. [74] Shi D, Kong Y, Yang J, Du H. Study on transition metal organic complex-polymer hybrid material for gas separation membrane. Acta. Polym. Sin. 2000;4:457-61. [75] Brzesowsky RH, de With G, van den Cruijsem S, Snijkers-Hendrickx IJM, Wolter WAM, van Lierop JG. Glass strengthening by silica particle reinforced organic-inorganic coatings. J. Non-Cryst. Solids. 1998;241(1):27-37. [76] Livage J, Sanchez C. Sol-gel chemistry. J. Non-Cryst. Solids. 1992;145:11-9. [77] Kioul A, Mascia L. Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents. J. Non-Cryst. Solids. 1994;175(2-3):169-86. [78] Smaihi M, Jermoumi T, Marignan J, Noble RD. Organic-inorganic gas separation membranes: preparation and characterization. J. Memb. Sci. 1996;116(2):211-20. [79] Iwata M, Adachi T, Tomidokoro M, Ohta M, Kobayashi T. Hybrid sol-gel membranes of polyacrylonitrile-tetraethoxysilane composites for gas permselectivity. J. Appl. Polym. Sci. 2003;88(7):1752-9. [80] Moaddeb M, Koros WJ. Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J. Memb. Sci. 1997;125(1):143-63. [81] Higuchi A, Agatsuma T, Uemiya S, Kojima T, Mizoguchi K, Pinnau I, et al. Preparation and gas permeation of immobilized fullerene membranes. J. Appl. Polym. Sci. 2000;77(3):529-37. [82] Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, et al. Ultrapermeable, Reverse-Selective Nanocomposite Membranes. Science. 2002;296(5567):519-22. [83] Hibshman C, Cornelius CJ, Marand E. The gas separation effects of annealing polyimide-organosilicate hybrid membranes. J. Memb. Sci. 2003;211(1):25-40. [84] Merkel TC, He Z, Pinnau I, Freeman BD, Meakin P, Hill AJ. Sorption and Transport in Poly (2,2-bis(trifluoromethyl) - 4,5- difluoro - 1,3- dioxole -co-tetrafluoroethylene) Containing Nanoscale Fumed Silica. Macromolecules. 2003;36(22):8406-14. [85] Winberg P, DeSitter K, Dotremont C, Mullens S, Vankelecom IFJ, Maurer FHJ. Free Volume and Interstitial Mesopores in Silica Filled Poly(1-trimethylsilyl-1-propyne) Nanocomposites. Macromolecules. 2005;38(9):3776-82. [86] Kong Y, Du H, Yang J, Shi D, Wang Y, Zhang Y, et al. Study on polyimide/TiO2 nanocomposite membranes for gas separation. Desalination. 2002;146(1-3):49-55. [87] Li Y, Chung T-S, Cao C, Kulprathipanja S. The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J. Memb. Sci. 2005;260(1-2):45-55. [88] Zimmerman CM, Singh A, Koros WJ. Tailoring mixed matrix composite membranes for gas separations. J. Memb. Sci. 1997;137(1-2):145-54. [89] Pechar TW, Kim S, Vaughan B, Marand E, Tsapatsis M, Jeong HK, et al. Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations. J. Memb. Sci. 2006;277(1-2):195-202. [90] Wang H, Holmberg BA, Yan Y. Homogeneous polymer-zeolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals J. Mater. Chem. 2002;12:3640-3. [91] Ahn J, Chung W-J, Pinnau I, Guiver MD. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Memb. Sci. 2008;314(1-2):123-33. [92] Vu DQ, Koros WJ, Miller SJ. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Memb. Sci. 2003;211(2):311-34. [93] Moore TT, Koros WJ. Non-ideal effects in organic-inorganic materials for gas separation membranes. J. Mol. Struct. 2005;739(1-3):87-98. [94] Tantekin-Ersolmaz SB, Atalay-Oral g, TatlIer M, Erdem-Senatalar A, Schoeman B, Sterte J. Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. J. Memb. Sci. 2000;175(2):285-8. [95] Rojey A, Deschamps A, Grehier A, Robert E. Process for separation of the constituents of a mixture in the gas phase using a composite membrane. US patent. 1990:4925459. [96] Sur MG, Ba N, Yilmaz L. Gas permeation characteristics of polymer-zeolite mixed matrix membranes. J. Memb. Sci. 1994;91(1-2):77-86. [97] Duval J-M, Kemperman AJB, Folkers B, Mulder MHV, Desgrandchamps G, Smolders CA. Preparation of zeolite filled glassy polymer membranes. J. Appl. Polym. Sci.. 1994;54(4):409-18. [98] Mahajan R, Koros WJ. Factors controlling successful formation of mixed-matrix gas separation materials. Ind. Eng. Chem. Res. 2000;39:2692-6. [99] Mahajan R, KKoros WJ. Mixed matrix membrane materials with glassy polymers. Part 1. Polym. Eng. Sci. 2002;42:1420-31. [100] Mahajan R, kKoros WJ. Mixed matrix membrane materials with glassy polymers. Part 2. Polym. Eng. Sci. 2002;42:1432-41. [101] Guiver MD, Robertson GP, Dai Y, Bilodeau F, Kang YS, Lee KJ, et al. Structural characterization and gas-transport properties of brominated matrimid polyimide. J. Polym. Sci. Pol. Chem. 2002;40(23):4193-204. [102] Li Y, Chung T-S, Kulprathipanja S. Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AIChE Journal. 2007;53(3):610-6. [103] Gorgojo P, Uriel S, Télez C, Coronas J. Development of mixed matrix membranes based on zeolite Nu-6(2) for gas separation. Microporous Mesoporous Mat. 2008;115(1-2):85-92. [104] Zhang Y, Balkus Jr KJ, Musselman IH, Ferraris JP. Mixed-matrix membranes composed of Matrimid?and mesoporous ZSM-5 nanoparticles. J. Memb. Sci. 2008;325(1):28-39. [105] Khan AL, Cano-Odena A, Gutiérez B, Minguillón C, Vankelecom IFJ. Hydrogen separation and purification using polysulfone acrylate-zeolite mixed matrix membranes. J. Memb. Sci. 2010;350(1-2):340-6. [106] Chen H, Sholl DS. Predictions of selectivity and flux for CH4/H2 separations using single walled carbon nanotubes as membranes. J. Memb. Sci. 2006;269(1-2):152-60. [107] Choi J-H, Jegal J, Kim W-N. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Memb. Sci. 2006;284(1-2):406-15. [108] Kim S, Chen L, Johnson JK, Marand E. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: Theory and experiment. J. Memb. Sci. 2007;294(1-2):147-58. [109] Peng F, Hu C, Jiang Z. Novel ploy(vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures. J. Memb. Sci. 2007;297(1-2):236-42. [110] Popov VN. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports. 2004;43(3):61-102. [111] Watts PCP, Fearon PK, Hsu WK, Billingham NC, Kroto HW, Walton DRM. Carbon nanotubes as polymer antioxidants. J. Mater. Chem. 2003;13:491-5. [112] Liu T, Tong Y, Zhang W-D. Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. Compos. Sci. Technol. 2007;67(3-4):406-12. [113] Song C, Wang T, Wang X, Qiu J, Cao Y. Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes. Sep. Purif. Technol. 2008;58(3):412-8. [114] Polotsky AE, Polotskaya GA. Study on top layer structure of composite membranes. J. Memb. Sci. 1998;140(1):97-102. [115] Koros J, Rezac A. preparation of polymer-ceramic composite membranes with thin defect-free separating layers. J. Appl. Polym. Sci. 1992;46:1927-38. [116] Shieh J-J, Chung TS. Cellulose nitrate-based multilayer composite membranes for gas separation. J. Memb. Sci. 2000;166(2):259-69. [117] Jain AK, Acharya NK, Kulshreshtha V, Awasthi K, Singh M, Vijay YK. Study of hydrogen transport through porous aluminum and composite membranes. Int. J. Hydrog. Energy. 2008;33(1):346-9. [118] Cai Y, Wang Z, Yi C, Bai Y, Wang J, Wang S. Gas transport property of polyallylamine-poly(vinyl alcohol)/polysulfone composite membranes. J. Memb. Sci. 2008;310(1-2):184-96. [119] Ye Z, Chen Y, Li H, He G, Deng M. Preparation of a novel polysulfone/polyethylene oxide/silicone rubber multilayer composite membrane for hydrogen-nitrogen separation. Mater. Chem. Phys. 2005;94(2-3):288-91. [120] Chung T-S, Shieh J-J, Lau WWY, Srinivasan MP, Paul DR. Fabrication of multi-layer composite hollow fiber membranes for gas separation. J. Memb. Sci. 1999;152(2):211-25. [121] Du R, Feng X, Chakma A. Poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes for gas separations. J. Memb. Sci. 2006;279(1-2):76-85. [122] Wang Z, Li M, Cai Y, Wang J, Wang S. Novel CO2 selectively permeating membranes containing PETEDA dendrimer. J. Memb. Sci. 2007;290(1-2):250-8. [123] Vijay YK, Wate S, Acharya NK, Garg JC. The titanium-coated polymeric membranes for hydrogen recovery. Int. J. Hydrog. Energy. 2002;27(9):905-8. [124] Chuang K-H, Liu Z-S, Chang Y-H, Lu C-Y, Wey M-Y. Study of SBA-15 supported catalysts for toluene and NO removal: the effect of promoters (Co, Ni, Mn. Ce). Reac. Kinet. Mech. Cat. 2010;99:409-20. [125] Charmette C, Sanchez J, Gramain P, Rudatsikira A. Gas transport properties of poly(ethylene oxide-co-epichlorohydrin) membranes. J. Memb. Sci. 2004;230(1-2):161-9. [126] Frounchi M, Dadbin S, Salehpour Z, Noferesti M. Gas barrier properties of PP/EPDM blend nanocomposites. J. Memb. Sci. 2006;282(1-2):142-8. [127] Digital Instruments InC. Nanoscope III, Control System Manual, Santa Barbara. 1993;CA. [128] Weng T-H, Tseng H-H, Wey M-Y. Preparation and characterization of PPSU/PBNPI blend membrane for hydrogen separation. Int. J. Hydrog. Energy. 2008;33(15):4178-82. [129] Sridhar S, Ganga D, Smitha B, Ramakrishna M. Dehydration of 2-butanol by pervaporation through blend membranes of chitosan and hydroxyl ethyl cellulose. Sep. Sci. Technol. 2005;40:2889-908. [130] Mika AM, Childs RF, Dickson JM, McCarry BE, Gagnon DR. Porous, polyelectrolyte-filled membranes: Effect of cross-linking on flux and separation. J. Memb. Sci. 1997;135(1):81-92. [131] Ismail AF, Lorna W. Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. Sep. Purif. Technol. 2002;27(3):173-94. [132] Khulbe KC, Matsuura T, Noh SH. Effect of thickness of the PPO membranes on the surface morphology. J. Memb. Sci. 1998;145(2):243-51. [133] M. Aguilar-Vega, D. R. Paul. Gas transport properties of polyphenylene ethers. J. Polym. Sci. Pt. B-Polym. Phys. 1993;31(11):1577-89. [134] Anunziata OA, Beltramone AR, Martínez ML, Belon LL. Synthesis and characterization of SBA-3, SBA-15, and SBA-1 nanostructured catalytic materials. J. Colloid Interface Sci. 2007;315(1):184-90. [135] Simha R, Boyer RF. On a general relation involving the glass temperature and coefficients of expansion of polymers. J. Chem. Phys. 1962;37:1003-7. [136] Eisenberg A, Hird B, Moore RB. A new multiplet-cluster model for the morphology of random ionomers. Macromolecules. 1990;23:4098-107. [137] Ismail AF, Rahim RA, Rahman WAWA. Characterization of polyethersulfone/Matrimid@5218 miscible blend mixed matrix membranes for O2/N2 gas separation. Sep. Purif. Technol. 2008;63(1):200-6. [138] Tan JMA, Noh SH, Chowdhurry G, Matsuura T. Influence of surface tensions of solvent/nonsolvent mixtures in membrane casting solutions on the performance of poly(2,6-dimethyl-1,4-phenylene) oxide membranes for gas separation applications. J. Memb. Sci. 2000;174(2):225-30.
摘要: 薄膜高分子鏈移動性、薄膜結晶性質、高分子鏈層間距離(d-spacing)以及薄膜表面型態是主導整個高分子混合/複合薄膜對氣體滲透行為之要素,其中又以高分子鏈移動性更具支配性。由於高分子鏈移動性與高分子本身結構特性及其與複合材質間之交互作用有關,因此本研究將探討不同組成份之高分子複合薄膜中,高分子鏈的移動性對氣體滲透率行為之影響,研究所用之高分子複合膜包括:(1)二成份高分子混合薄膜、(2)交聯改質薄膜、(3)有機無機複合高分子薄膜、以及(4)具支撐層之高分子複合膜,並藉由電子顯微鏡(FESEM)、原子力學顯微鏡(AFM)、熱示差掃瞄分析儀(DSC)及傅立葉紅外線轉換光譜儀(FTIR)分別觀察高分子複合膜的表面型態、表面粗糙度、結晶度、官能基等特性,及其與薄膜滲透選擇之相關聯性,期望能製備出同時具有高的滲透及選擇率之薄膜,以便往後運用在氣體分離的領域。 玻璃轉化溫度及層間距離對應出高分子鏈移動性與氣體滲透之相關性是本研究重點,經混合後之PPSU/PBNPI高分子薄膜高分子鏈與鏈之間互相作用,產生之層間距離大小取決於混合薄膜中PPSU之濃度比例,67/33 wt% PPSU/PBNPI因層間距離大,明顯提高氣體滲透率,此外混合後薄膜轉為較無結晶型結構,高分子鏈容易移動且有相分離現象產生均是導致提升氣體滲透率之要素。此外,以交聯劑改質混合薄膜經交聯作用後高分子鏈共價作用導致高分子鏈緊密鏈移動性降低層間距離縮小提升了薄膜結晶度,因此使得交聯後PPSU/PBNPI混合薄膜能提升氣體選擇率。 在有機-無機複合薄膜中,由XRD結果證實,無機材料的添加將影響了高分子鏈的移動及層間距離,就添加奈米碳管而言,複合薄膜玻璃轉化溫度下降,證實其高分子鏈的移動性隨添加量的增加而提升。此外,就具支撐層之高分子複合薄膜而言,薄膜厚度以及表面及底層粗糙係數亦會對氣體滲透及選擇率產生影響,PPO/CMS/Al2O3多層複合薄膜之H2/CH4及H2/N2選擇率分別高達31.8及37.1,該值較純PPO高分子高,主要原因為PPO塗佈於經由CMS修飾過的CMS/Al2O3支撐層上能夠使PPO薄膜表面更為平滑,薄膜結構粗糙係數由表面往底層增加可有效提升氣體滲透率及選擇率。除了改變了薄膜表面結構外,高分子鏈亦因添加了SBA-15轉變為較堅硬分子鏈降低了移動性,使得玻璃轉化溫度增加提升了氣體選擇率,特別是在添加10 wt% SBA-15時, H2/CH4、H2/N2及CO2/CH4選擇率分別提升為50.9、38.9及25.6。 有此可見高分子鏈移動性會因混合不同高分子材料、交聯作用、添加奈米複合材料受到影響,且薄膜表面底部粗糙係數亦會影響氣體通過薄膜速率,本研究針對不同薄膜的組成探討高分子鏈移動性之變化與氣體滲透之間關係,有助於更清楚釐清高分子薄膜氣體滲透選擇之行為。
The mobility, crystallization, and d-spacing of polymer membranes are the key parameters for controlling gas permeation behavior through the blend and composite membranes. Among them, the polymer chain mobility is dominant. The polymer chain mobility property is related to the polymer structure itself and to the interaction of composite materials. Therefore, the aim of this study is to show the relationship between the polymer chain mobility interaction and gas separation properties of the different composite membranes. The composite membranes include the following: (1) blend membrane, (2) cross-linking membrane, (3) organic-inorganic composite membrane, and (4) supported multi-layer composite membrane. The morphological studies, roughness coefficient, crystalline structure, glass transition temperature (Tg), and functional group of all the composite membranes were obtained using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) to identify the relationship between the characterizations and gas separations of the composite membranes. In this study, highly permeable and highly selective composite membranes were fabricated for later use in the field of gas separation. This study reports the glass transport temperature and the polymer chain d-spacing corresponding to polymer chain mobility and gas permeation. The results indicate that for PPSU/PBNPI blend polymer membranes, the variation of the d-spacing depends on the PPSU content of the PPSU/PBNPI blend membrane. When the PPSU content increased to 67 wt%, the polymer d-spacing increased, resulting in improving gas permeability. Furthermore, the increased gas permeation was attributed to the crystalline structure transformation to amorphous structure, easy polymer chain mobility, and phase separation phenomenon, which resulted in the blend membranes. For the crosslinking membranes, the reduction of polymer chain mobility and d-spacing was attributed to the polymer chain covalent bond caused by the crosslinking agent in the blend membranes, which resulted in the increased gas selectivity of the crosslinking blend membranes. Based on the X-ray diffraction (XRD) result, adding the inorganic particle into the polymer matrix affected the polymer chain mobility and d-spacing of the organic-inorganic composite membranes. For example, when the carbon nanotubes were added, the chain mobility and d-spacing of the organic-inorganic hybrid membranes increased with the increasing carbon nanotube content. Furthermore, supporting the polymer membranes with CSM/Al2O3 materials, the membrane thickness and roughness coefficients of the top and bottom surfaces of PPO changed, also affecting the gas permeability and selectivity of PPO/CMS/Al2O3 composite membranes. The H2/CH4 and H2/N2 selectivity of the PPO/CMS/Al2O3 composite membranes increased remarkably, reaching 31.8 and 37.1, respectively, which are higher than the values of homogeneous PPO. This result was confirmed by preparing a composite membrane by first coating a CMS layer onto the Al2O3 support. The top surface of the PPO selective layer became very smooth and tended to reduce the defects between the selective layer and the CMS layer, yielding composite membranes with better separation performance. Furthermore, the increments of the glass transition temperature of the composite membranes with SBA-15 confirmed that SBA-15 causes the polymer chains to become rigid and the reduction of polymer chain mobility. This phenomenon enhanced the H2/CH4, H2/CH4, and H2/N2 gas selectivities, reaching to 50.9, 38.9, and 25.6, respectively, especially when the SBA-15 loading increased to 10 wt%. The blend of different polymer precursors, crosslinking, and added nano inorganic material affects the polymer chain mobility of polymer membranes. Meanwhile, the roughness coefficient of the membranes also affects the gas separation performance of polymeric membranes. Thus, this thesis aims to understand the relationship between polymer chain mobility interaction and gas separation properties of the different kinds of membranes, helping to clarify the gas separation mechanism of polymeric membranes.
URI: http://hdl.handle.net/11455/5753
其他識別: U0005-1708201015322400
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708201015322400
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.