Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5757
標題: 利用微藻去除工業廢水中氮、磷並產生生質柴油之可行性研究
The feasibility of nitrogen and phosphorus removal in industrial wastewater and biodiesel production by microalgae
作者: 黃愛蘋
Huang, Ai-Ping
關鍵字: microalga
微藻
wastewater treatment
lipid
biodisel
廢水處理
脂質
生質柴油
出版社: 環境工程學系所
引用: 行政院新聞局http://info.gio.gov.tw/mp.asp?mp=1 行政院環保署網站 http://www.epa.gov.tw/ 經濟部能源局網站 http://www.biodiesel-w.org/GCB_01/GCB02.htm 陳伯中。(1986)。藻類之研究與應用研討會論文集。藻類與能源。第67-76頁。 陳見財。(2004)。廢水三級處理技術與實務。經濟部工業局環保技術輔導計劃。 陳佳雯。(2010)。利用微藻去除廢水中氮磷及累積油脂之研究。國科會大專生專題研究計畫。 陳志威 和 吳文騰。(2002)。生生不息的生質能源。科學發展期刊, 359, 9-11. 盧偉銘。(1993)。固定化藍綠藻處理含氮廢水之研究。國立中興大學環境工程研究所碩士論文。 賴芃劭。(2008)。高脂質累積潛力微藻脂分離及生質柴油生長限制因子之探討。國立中興大學環境工程學研究所碩士論文。 葉俊良。(2006)。在光生化反應器中以二階段策略培養微藻生產油脂之研究。國立成功大學環境工程研究所碩士論文。 董俊德, 吳伯堂 和 黃羽庭。(1999)。微藻在污水中的除磷脫氮作用。熱帶海洋。 雷國元, 范唯, 李媛, 鄭慧敏 和 李俊十。(2007)。固定化藻膜去除水中氮磷的模擬研究。生態環境。 歐陽嶠暉, 莊順興 和 曾淳錚。(2008)。科學園區污水處理之展望。中華技術工程論著。 歐陽嶠暉。(2005)。下水道工程學。長松文化。 鄭恆琪。(1995)。環境因子控制 Chiorella minutissima 之化學及脂肪酸組成。國立台大農業化學研究所碩士論文。 鄭玟芩。(2008)。海洋微藻在氮源限制下固定CO2與生質潛能組成之研究。國立成功大學環境工程所碩士論文。 莊順興。(1997)。脫氮除磷代謝模式與反應動力之研究。國立中央大學環境工程研究所博士論文。 胡洪营, 李鑫 和 楊佳。(2009)。關於微藻細胞培養的水質深度淨化與高價值生物質生產耦合技術。 Ecology and Environmental Sciences, 18,1122-1127. Atkinson, B., Mavituna, F. (1983). Biochemical engineering and biotechnology handbook. Stockton, New York, NY, USA. Asian, S., Kapdan, K.I. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological engineering, 28, 64-70. Becker, E.W. (1994). Microalgae:biotechnology and microbiology. Cambridge University Press. Bligh, E. G., Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Candian Journal of Biochemistry and Physiology, 37, 911-917. Carlsson, H., Aspegren, H., Lee, N. (1997). Calcium phosphate precipitation in biological phosphrous removal system. Water research, 31, 1047-1055. Carvalho, A.P., Malcata, F.X. (2005). Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Marine Biotechnology, 7, 381-388. Chang, E.H., Yang, S.S., (2003). Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot Bull Acad Sin. 44, 43–52. Chan, E.C.S., Michael J. Pelczar, J., Krieg, N.R. (1993). LABORATORY EXERCISES IN MICROBIOLOGY. 6th. Edition. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25, 294-306. Chiu, S.-Y., Kao, C.-Y., Chen, C.-H., Kuan, T.-C., Ong, S.-C., Lin, C.-S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389-3396. Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A., Harrison, P.J. (1999). An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. Journal of Applied Phycology, 11, 179-184. Comeau, Y., Hall, K. J., Hancock, R. E. W., Oldham, W. K. (1986). Biochemical Model for Enhanced Biological Phosphorus Removal. Water Research, 20, 1511-1521. de Morais, M.G., Costa, J.A.V., (2007a). Biofixation of carbon dioxide by Spirulina sp and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnol. 129, 439–445. de Morais, M.G., Costa, J.A.V., (2007b). Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag. 48, 2169–2173. D''Souza, F.M.L., Kelly, G.J. (2000). Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus) larvae. Aquaculture, 181, 311-329. Demirbas, A. (2009). Importance of biodiesel as transportation fuel Energy Policy, 50, 14-34. Olguin, EJ. (2003). Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Advances, 22, 81-89. EN 14214, (2004). European Standard EN 14214 (2004). Automotive Fuels – Fatty Acid Methyl Esters (FAME) for Diesel Engines – Requirements. Fangrui, Ma., Hanna, M. A. (1999). Biodiesel production:a review. Bioresource Technology, 70, 1-15. Gray, K.A., Zhao, L., Emptage, M. (2006). Bioethanol. Current Opinion in Chemical Biology, 10, 141-146. Greenberg, A. Trussel, R. R., Cleseeri, L.S. (1985). Standard Methods for the Examination of Waste and Wastewater. Am. Public Health Assoc., Washington, DC. 16th 2d., 1268. Grobbelaar, J.U. (2002). Algal nutrition: mineral nutrition.In:Handbook of microalgal culture: biotechnology and applied phycology, 97-116. Harrison, J. S. (1973). Pigment analysis. In:Stein J.R.,Handbook of Phycological Methods Culture Methods and Growth Measurements. Cambridge University Press, Cambridge. 359-368. Hernandez, J.P., de-Bashan, L.E., Bashan, Y. (2006). Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme and Microbial Technology, 38, 190-198. Hoshida, H., Takayuki, O., Akira, M., Rinji, A., Yoshinori.N. (2005). Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations. Journal of Applied Phycology, 17, 29-34. Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87, 38–46. Illman, A.M., Scragg, A.H., Shales, S.W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27, 631-635. Kaewpintong, K., Shotipruk, A., Powtongsook, S., Pavasant, P. (2007). Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor Bioresource Technology, 98, 288-295. Kalligeros, S., Zannikos, F., Stournas, S., Lois, E., Anastopoulos, G., Teas, C., Sakellaropoulos, F. (2003). An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine Biomass and Bioenergy, 24, 141-149. Kondili, E.M., Kaldellis, J.K. (2007). Biofuel implementation in East Europe: Current status and future prospects. Renewable and Sustainable Energy Reviews, 11, 2137-2151. Ley, A.C., Butler, W.L. (1980). Effects of Chromatic Adaptation on the Photochemical Apparatus of Photosynthesis in Porphyridium cruentum. Plant Physiology, 65, 714-722. Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., James G. Goodwin, J. (2005). Synthesis of Biodiesel via Acid Catalysis. Ind. Eng. Chem. Res., 44, 5353–5363. Madigan, M.T., Dunlap, P.V. Martinko, J.M., Clark, D.P. (2008). Brock biology of microorganisms. 12th. Edition. Martinez, M.E., Sánchez, S., Jiménez, J.M., Yousfi, El F., Muñoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology,73,263-272. Mata, T.M., Martins, A.n.A., Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217-232. McCarty, P., Beck, L., Amant, P. (1969). Biological denitrification of wastewaters by addition of organic materials. Proc. Of 24th. Edition. Ind. Waste Conf., Perdue Univ., 1271-1285. Metcalf, Eddy, Inc. (1991) Wastewater Engineering: Treatment, Disposal, Reuse, 3th. Edition. , McGraw-Hill, Inc, New York. Morris, I. (1980). The Physiological Ecology of Phytoplankton. Blackwell Scientific Publication, Oxford, 625. Nelson, D. L., Cox, M. M. (2008). Principles of biochemistry. 5th . Edition. Ogbonna, J.C., Yada, H., Masui, H., Tanaka, H. (1996). Novel Internally Illuminated Stirred-Tank Photobioreactor for Large-Scale Cultivation of Photosynthetic Cells. Journal of Fermentation and Bioengineering, 82, 61-67. Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie, 86, 807–815. Renaud S.M., Thinh L.V., Lambrinidis, G., Parry D.L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211, 195-214. Richmond, A. (1986). Microalgaculture. Crit Rev Biotechnol, 4, 368-438. Román-Leshkov, Y., Barrett, C.J., Liu, Z.Y., Dumesic, J.A. (2007). Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, Vol. 447, pp. 982-985. Rose, P.D., Maart, B.A., Dunn, K.M., Rowswell, R.A., Britz, P. (1996). High rate algal oxidation ponding for the treatment of tannery effluents. Water Science and Technology, 33, 219-227. Sawayama, S., Rao, K.K., Hall, D.O. (1998). Nitrate and phosphate ion removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Appl Microbiol Biotechnol, 49, 463-468. Sawyer, C. N., Mccarty, P. L. (1991). Chemistry for Environmental ngineering. McGraw-Hill. Scheible, O. K. (1993). Process Design Manual for Nitrogen Control, US. EPA, EPA/625/R-93-010, Washington, DC. Schumacher, L.G., Borgelt, S.C., Fosseen, D., Goetz, W., Hires, W.G. (1996). Heavy-duty engine exhaust emission tests using methyl ester soybean oil/diesel fuel blends. Bioresource Technology, 57, 31-36. Scragg, A.H., Illman, A.M., Carden, A., Shales, S.W. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass and Bioenergy, 23, 67-73. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P. (1998). A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae. U.S. Department of Energy’s Office of Fuels Development. Shi, J., Bjoern, P., Michael, M. (2007). Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. Journal of Applied Phycology, 19, 417-423. Shuval, H.I., Gruener, N. (1977). Infant methemoglobinemia and other health effects of nitrate in drinking water. Progress in Water Technology, 8, 183-193. Silva, H.J., Pirt, S.J., (1984). Carbon dioxide inhibition of photosynthetic growth of Chlorella. Journal of General Microbiology. Microbiol. 130, 2833–2838. Sobczuk, T. M., Camacho, F. G., Rubio, F. C. F., Fernández , G. A., Grima E. M. (2000). Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering, 67, 465-475. Sorensen, B. H., Nyholm, N, Baun A., (1996). Algal Toxicity Tests with Volatile andHazardous Compounds in Air-Tight Test Flasks with CO2 Enriched Headspace. Chemosphere, 32, 1513-1526. Stein, J.R. (1973). Handbook of Phycological methods. Culture methods and growth measurements. Cambridge University Press. 448. Strickland, J. D. H., Holm-Hansen, O., Eppley, R., Linn W. R. J.. (1969). The use of a deep tank in plankton ecology. I. Studies of the growth and composition of phytoplankton crops at low nutrient levels. Limnology and Oceanography, 14, 23-34. Sung, K.D., Lee, J.S., Shin, C.S., Park, S.C., Choi, M.J., (1999). CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technol. 68, 269–273. Turpin, D. H. (1991). Effect of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology, 27, 14-20. Vasudevan, P.T., Briggs, M. (2008). Biodiesel production—current state of the art and challeng. Journal of Industrial Microbiology and Biotechnology, 35, 421-430. Vergara-Fernández, A. (2008). Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32, 338-340. Wang, B., Li, Y., Wu, N., Lan, C.Q. (2008). CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol, 79, 707–718. Wang, D.-Z., Hsieh, D.P.H. (2002). Effects of nitrate and phosphate on growth and C2 toxin productivity of Alexandrium tamarense CI01 in culture. Marine Pollution Bulletin, 45, 286-289. Wentzel, M. C., Ekama, G. A., Marais, G. V. R. (1992) Process and Modeling of Nitrification Denitritication Biological Excess Phosphorus Removal System – A Review . Water Science and Technology, 25, 59-82. Wiltshire, K. H., M. Boersma, A. Möller, H. Buhtz. (2000). Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquatic Ecology, 34, 119-126. Xin, L., Hong-ying, H., Ke, G., Ying-xue, S. (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101, 5494-5500. Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S., Takasaki, Y. (1995). Characteristics of Hydrogen Production by Aciduric Enterobacter aerogenes strain HO-39. Journal of Fermentation and Bioengineering, 80, 571-574. You, T., Barnett, SM. (2004). Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochemical Engineering Journal, 19, 251-258. Yung, K.H., Mudd, J.B. (1966). Lipid synthesis in the presence of nitrogenous compounds in Chlorella pyrenoidosa. Plant Physiology 41, 506–509.
摘要: 藻類被認為是產生生質能的好材料,其生長快速及所產生的生質柴油量是陸生植物的數十倍,在研究發展上很有優勢;且藻類可利用廢水中的營養鹽(NH4+、NO3-、PO43-)生長,並同時達到氮、磷去除的目的,兼具資源再利用及能源回收的雙重效益。因此,本研究希望能結合微藻攝取水體中氮磷能力及累積脂質的特性,達到廢水處理及產生能源的目標。 本研究利用中部水塘分離的Desmodesmus sp. TAI-1及Chlamydomonas sp. TAI-2各一株,培養於光反應器中,先利用培養基找出其適合生長及產油的最適條件,分別為適合之氮源種類、氮源濃度,以及不同CO2濃度及光照週期,經藻株篩選後,再以實際的工業廢水作為測試,試驗其在最適生長條件下對工業廢水中氮磷的去除及脂質累積情形。 最適生長條件結果顯示,Desmodesmus sp. TAI-1及Chlamydomonas sp.TAI-2培養於氮源濃度為41.2 mg/L曝5%之CO2濃度及全光照的條件下,具有最多的脂質含量及脂質產率,且在CO2濃度試驗中,顯示兩株藻皆可耐受高濃度的CO2,氮鹽約第三天就利用完。經藻株篩選,選用Chlamydomonas sp.TAI-2 培養在最佳操作條件下進行工業廢水的測試, 由結果得知Chlamydomonas sp. TAI-2可有效去除水體中的氨氮(38.4 mg/L)及硝酸鹽氮(3.1 mg/L),並可累積18.4%的脂質含量。由實驗結果顯示利用廢水當藻類培養基,進而處理廢水並產生生質柴油是可行的。
Microalga is a photosynthetic microorganism that uses the solar energy to combine water with CO2 create biomass. They can utilize NH4 +, NO3 -, and PO43- as growth nutrients, and remove these inorganic nutrients from wastewater. Microalgae have been suggested as very good candidates for fuel production. In this study the nitrogen and phosphorus assimilation and lipid production by microalgae using wastewater were studied in a 5 L photobioreactor in order to reach the goal of wastewater treatment and energy production. At first, the conditions for the best growth and lipid accumulation, including the nitrogen species, nitrogen concentration, CO2 concentration and illumination period, with algal medium were investigated in order to choose the better microalgae. Desmodesmus sp. TAI-1 and Chlamydomonas sp. TAI-2, which were isolated from the ponds in middle Taiwan were used. Then the feasibility of nitrogen and phosphorus removal and lipid accumulation with industrial wastewater by the selected microgalgae were tested. The results showed that where Desmodesmus sp. TAI-1 and Chlamydomonas sp. TAI-2 cultures were performed under nitrogen concentration of 41.2 mg/L, aerated with 5% CO2 , continuous illumination and ten days incubation time had a maximum of lipid contest and lipid yields. Besides, these strains could tolerate CO2 concentration up to 25% and remove all of the nitrogen source within three days. Chlamydomonas sp. TAI-2 was chosen as the better one. With industrial wastewater, Chlamydomonas sp. TAI-2 could remove NH4+-N (38.4 mg/L) or NO3--N (3.1 mg/L) effectively and accumulated or lipid up to 18.4%. Consequently, it is possible to use microalgae to remove nitrogen in the wastewater and subsequently to produce biodisel.
URI: http://hdl.handle.net/11455/5757
其他識別: U0005-1907201021451900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1907201021451900
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.