Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5764
標題: 利用多元醇法製備Cu/CeO2觸媒低溫催化一氧化碳之研究:不同鈰擔體材料之影響
A study of Cu/CeO2 catalysts prepared by polyol process for CO oxidation at low temperature: the effects of cerium support
作者: 張文棋
Chang, Wen-Chi
關鍵字: polyol method
多元醇法
carbon monoxide
catalytic oxidation
Cerium(Ⅳ) oxide
一氧化碳
觸媒氧化作用
二氧化鈰
出版社: 環境工程學系所
引用: Avgouropoulos, G. and Ioannides, T. (2003). Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Applied Catalysis A: General, 244(1), 155-167. Bamwenda, G.R., Uesigi, T., Abe, Y., Sayama, K., and Arakawa, H. (2001). The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+ and Ce4+ as electron acceptors. Applied Catalysis A: General, 205(1-2), 117-128. Bonet, F., Grugeon, S., Herrera-Urbina, R., Tekaia-Elhsissen, K., and Tarascon, J.M. (2002). In situ deposition of silver and palladium nanoparticles prepared by the polyol process, and their performance as catalytic converters of automobile exhaust gases. Solid State Sciences, 4(5), 665-670. Carotenuto G. (2001). Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Applied Organometallic chemistry, 15, 344-352. Gurbani, A., Ayastuy, J.L., Gonza ́lez-Marcos, M.P., Herrero, J.E., Guil, J.M., and Gutie ́rrez-Ortiz, M.A. (2009). Comparative study of CuO-CeO2 catalysts prepared by wet impregnation and deposition–precipitation. international journal of hydrogen energy, 34(1), 547-553. Hirai, H., Nakao, Y., and Toshima, N. (1979). Preparation of colloidal Transition Metals in Polymers by Reduction with Alcohols or Ethers. Journal of macromolecular science part A :chemistry, 13, 727-750. Izu, N., Shin, W., Murayama, N., and Kanzaki, S. (2002). Resistive Oxygen Ges Sensors Based on CeO2 Fine Powder Prepared Using Mist Pyrolysis. Sensors and Actuators B: Chemical, 87(1), 95-98. Kudo, S., Maki, T., Yamada, M., and Mae, K. (2010). A new preparation method of Au/ferric oxide catalyst for low temperature CO oxidation. Chemical Engineering Science, 65(1), 214-219. Kurihara, L.K., Chow, G.M., and Schoen, P.E. (1995). Nanocrystalline metallic powders and films produced by the polyol method. Nanostructured Materials, 5(6), 607-613. Liu, L., Liu, B., Dong, L., Zhu, J., Wan, H., Sun, K., et al. (2009). In situ FT-infrared investigation of CO or/and NO interaction with CuO/Ce0.67Zr0.33O2 catalysts. Applied Catalysis B: Environmental, 90(3-4), 578-586. Liu, Z., Ling, X.Y., Su, X., Lee, J.Y., and Gan, L.M. (2005). Preparation and characterization of Pt/C and Pt-Ru/C electrocatalysts for direct ethanol fuel cells. Journal of Power Sources, 149, 1-7. Miyazaki, A., Balint, I., Aika, K.I., and Nakano, Y. (2001). Preparation of Ru Nanoparticales Supported on γ-Al2O3 and Its Navel Catalyic Activity for Ammonia Synthesis. Journal of Catalysis, 204(2), 364-371. Park, E.D., Lee, D., and Lee, H.C. (2009). Recent progress in selective CO removal in a H2-rich stream. Catalysis Today, 139(4), 280-290. Pérez-Hernández, R., Gutiérrez-Martínez, A., and Gutiérrez-Wing, C.E. (2007). Effect of Cu loading on CeO2 for hydrogen production by oxidative steam reforming of methanol. International Journal of Hydrogen Energy, 32(14), 2888-2894. Ta, N., Zhang, M., Li, J., Li, H., Li, Y., and Shen, W. (2008). Facile Synthesis of CeO2 Nanospheres. Chinese Journal of Catalysis, 29(11), 1070-1072. Wark, K. and Warner, C.F. (1981). Air Pollution: Its Origin and Control. 2nd ed. New York, NY.: Harper and Row Publishers. Zheng, X., Zhang, X., Wang, X., Wang, S., and Wu, S. (2005). Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation. Applied Catalysis A: General, 295(2), 142-149. 王興平,(2004),“奈米介孔二氧化鈰之合成及特性”,國立成功大學材料科學及工程學系,碩士論文。 吳紅苗、劉靜、楊學敏、汪麗娜、莫流業、樓輝、鄭小明等人,(2009),“燃燒劑對燃燒法合成CeO2納米粉體的影響”,浙江大學學報(理學版),第36卷第3期,309-317。 李小忠、王連軍、趙銘、李建生、孫秀云,(2006),“納米CeO2晶體製備及光催化性能的研究”,環境化學,第25卷第2期,149-152。 杜云艷、李曉杰、王小紅、閆紅浩、孫貴磊、江德安,(2009),“硝酸鈰爆轟製備球形納米CeO2顆粒”,爆炸與衝擊,第29卷第1期, 41-44。 周濤、賀貝貝、江涵、王寧,(2007),“化學沈澱法製備CeO2的工藝研究”,武漢理工大學學報,第29卷10期,161-164。 洪宇箴、白 璐、林金定、高森永、簡戊鑑,(2010),“台灣地區1986-2007年意外中毒死亡趨勢分析”,臺灣公共衛生雜誌,第29卷2期, 97-107。 高東煒、陳永煌、莊明憲、柯景馨、周稚傑、羅慶徽,(2003),“一氧化碳中毒”,中華職業醫學雜誌,第10卷第3期,167-174。 高勇、王玲玲、劉晃清,(2004),“奈米CeO2的制備及應用研究”,材料導報,第18卷第5期,128-130。 尉士民、杜芳林,(2002),“CO氧化催化劑進展”,青島化工學院學報,第23卷第4期,40-47。 張世燊,(2006),“不同製備方法對於CeO2觸媒催化含酚廢水濕式氧化反應之影響”,嘉南藥理科技大學環境工程與科學系,碩士論文。 張弘毅、,陳慧英,(2005),“二氧化鈰的奈米粉粒之製備及應用”,化工,第52卷第4期,47-62。 張思華、謬應菊、史曉杰、王應明,(2008),“催化CO氧化的銅系催化劑的研究進展”,應用化學,第37卷第9期,1089-1093。 張曉麗、高彪、李騰、周乃峰、鄭修成、吳世華,(2008),“CuO/CeO2奈米催化劑的制備及性能”,鄭州大學學報(理學版),第40卷第4期,78-83。 望熙榮,(1995),“空氣污染防治”,中央圖書出版社,台北市。 梁飛雪、朱華青、秦張峰、王建國,(2008),“一氧化碳低溫催化氧化” ,化學進展,第20卷第10期,1453-1464。 郭鋒、王曉東、官繼成,(2008),“草酸鹽沉澱法製備納米CeO2研究” ,內蒙古工業大學學報,第27卷1期,25-29。 陳俐潁,(2006),“多元醇法製備奈米氧化金屬觸媒於低溫下催化VOC之研究”,國立中興大學環境工程研究所,碩士論文。 黃正義、陳王琨,(1994),“空氣污染與:污源與防治”,淑馨出版社,台北市。 楊春生、陳建華,(2003),“氧化鈰和氧化鑭在汽車尾氣凈化催化劑中的應用” ,中國稀土學報 ,第21卷第2期,129-132。 董林,(2009),“負載型催化劑的表面相互作用及其在大氣分子污染物NO和 CO消除中的應用基處研究”,催化學報,第30卷第11期,1150-1169。 鄒漢波、董新法、林維明,(2004),“非貴金屬催化劑上CO選擇性氧化反應的研究”,天然氣化工,第29卷第6期,10-13。 廖瑋婷,(2010),, “金觸媒在低溫下一氧化碳氧化之應用”,, 國立中央大學化學工程與材料工程研究所,碩士論文。 黎永成、銀董紅、李克、金勇、秦亮生,(2008),“CuO-CeO2非複合氧化物催化劑的製備及CO的催化性能” , 湖南師範大學自然科學學報,第31卷第3期,74-85。 蕭惠文、王玠仁、潘志寬、施養志,(2009),“市售紙菸主煙流中尼古丁、焦油及一氧化碳含量監測” ,藥物食品檢驗局調查研究年報,第27期,284-295。 薛丁維,(2007),“奈米碳管觸媒於氣狀污染物之去除研究”,國立中興大學環境工程研究所,碩士論文。 韓振華、李國彬、田峰、焦鍵,(2007),“奈米CeO2的制備及其應用” , 納米科技,第4卷第5期,23-30。 羅孟飛、朱波、周烈華、袁賢鑫,(1996),“過渡金屬催化劑上CO還原NO反應性能研究”,環境化學,第15卷第4期,296-300。 欒偉娜、陳沙鷗、張永成、李達、景悅林、邵渭泉等人、夏臨華,(2006),“不同液相法製備CeO2粉體的對比研究”,青島大學學報(自然科學版),第19卷第3期,34-38。
摘要: 近年來隨著民眾環保意識的抬頭,人們愈來愈重視人體健康及減少對地球環境的破壞,該如何有效的控制污染物的排放,已是目前重要的課題。 目前應用於一氧化碳污染物的去除方法主要是以觸媒氧化法為主,有效提升對一氧化碳的去除效率是值得探討的方向之一,影響觸媒活性大小的因子包括:觸媒的擔體種類、金屬活性相及觸媒製備方法等因素。因此本研究選擇二氧化鈰做為擔體,利用多元醇法及含浸法製備觸媒,探討商業及自製之二氧化鈰擔體觸媒(熱解法及沈澱法)對於一氧化碳去除的催化活性,並利用TEM、BET、XRD、FESEM及ICP-MS進行觸媒的物化特性分析。 結果指出,製備二氧化鈰擔持銅觸媒(Cu/CeO2)的觸媒鍛燒溫度依催化活性大小依序為500℃>300℃>700℃;比較含浸法與多元醇法發現,多元醇法製備之觸媒因具有高分散性及活性相顆粒較小等優點,因此有較高之去除效率;在商業與自製之二氧化鈰擔體觸媒的比較中,發現以熱解法製備的擔體,在一氧化碳催化反應中具有較佳的去除效率,其活性大小依序為Cu/CeO2-P(熱解法)> Cu/CeO2-C(商業)> Cu/CeO2-D(沈澱法)。
In recent years, environment awareness has been heightened to promote human health and reduce the destruction of the global environment. Effectively control the emissions of pollutions is an important topic. Currently, the catalytic oxidation of CO is known as the most effective post-treatment for reducing CO emissions. It is worth discussing how to promote the CO removal efficiency among the catalysts. Catalytic performance depends on the nature of the support, active site, and preparation techniques. The aims of this study were to employ the various CeO2 as supports for copper catalysts preparation, such as commercial CeO2 and selfprepared CeO2 (pyrolysis and deposition method). Then Cu/CeO2 catalysts were prepared by using polyol process and impregnation method to evaluate the catalytic activity for CO removal. The properties of catalysts were analyzed by TEM, BET, XRD, FESEM, and ICP-MS. The experimental results show that the catalytic activity of the Cu/CeO2 catalysts with different calcination temperatures followed a particular sequence: 500℃>300℃>700℃. Compared the impregnation method with polyol method, the polyol process can generate well-dispered metal nanoparticles over the support and show the higher CO removal efficiency. Comparing commercial CeO2 with selfprepared ones, Cu/CeO2 catalyst prepared with the selfprepared CeO2 by pyrolysis showed higher performance than others. The catalytic activity for CO removal is in the order of Cu/CeO2-P (pyrolysis method) > Cu/CeO2-C (commercial) > Cu/CeO2-D (deposition method).
URI: http://hdl.handle.net/11455/5764
其他識別: U0005-2208201010311500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201010311500
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.