Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5771
標題: 淨水程序中快濾池去除藻類效能之研究
Removal efficiency of algae through rapid sand filter in drinking water purification process
作者: 邱莉婷
Ciou, Li-Ting
關鍵字: water purification process
淨水程序
rapid sand filter
removal algae
快濾池
藻類去除
出版社: 環境工程學系所
引用: Reference 王瑋龍、王祈麟、林敬舒、陳伯中,2002,白沙湖藻類之調查,嘉義大學學報73:75―130。 林志麟、袁如馨,2009,藻類特性及前氧化劑對藻類混沉及過濾移除之影響,中華民國自來水協會會刊,第28卷,第2期,16-26。 高肇藩,1987,給水工程(衛生工程,自來水篇),大專用書。 陳伯中,1992,台灣中部河川之水質評估及生物指標(藻類),行政院環保署環境檢驗所。 張晉,1999,水處理工程與設計(下),台北: 鼎茂圖書。 葉宣顯,1999,澄清湖高級淨水處理模場試驗研究(第一年)報告,台灣省自來水公司委託計畫。 廖仲洲、吳美慧、姚寶蓮、楊詩思、黃永富、杭子樵、蘇金龍,2008,板新給水廠白濁水期間靜水處理之最佳加藥條件探討,中華民國自來水協會會刊,第27卷,第4期,24-32。 歐陽嶠暉,2005,下水道工程學: 水環境水再生工程學,長松文化出版。 經濟部水利署,2009,『提升傳統淨水程序之處理效能與水質穩定性研究:異常原水水質之應變與操作技術提(1/4)』。 姜佳伶,2007,淨水場沉澱及過濾單元濁度去除及其衍生廢污量之研究,國立中央大學環境工程研究所碩士論文,p13~17。 Bartram, J., Burch, M., Falconer, I.R., Jonem, G., Kuiper- Goodman, T., “Toxic Cyanobacteria in Water.” A Guide to their Public Health Consequences, Monitoring and Management. London, pp. 179–209 (1999). Burch, M.D., “The Development of an Alert Levels and Response Framework for the Management of Blue-Green Algae Blooms.” Australian Centre for Water Quality Research and the University of Adelaide Symposium on Blue-Green Algae Blooms – New Developments in Research and Management, Adelaide, South Australia (1993). Drikas, M., Chow, C.W.K., House, J., Burch, M.D., “Using coagulation, flocculation and settling to remove toxic cyanobacteria.” J. Am. Water Works Assoc. Vol. 93 (2), pp. 100–111 (2001). Edzwald, J.K.,Wingler, B.J., “Chemical and physical aspects of dissolved air-flotation for the removal of algae.” Aqua, Vol. 39, pp. 24–35 (1990). Hoeger, S.J., Shaw, G., Hitzfeld, B.C., Dietrich, D.R., “Occurrence and elimination of cyanobacterial toxins in two Australian drinking water treatment plants.” Toxicon, Vol. 43, pp. 639–649 (2004). Jiang, J., Graham, N.J.D., “Preliminary evaluation of the performance of new pre-polymerised inorganic coagulants for lowland surface water treatment.” Water Sci. Technol, Vol. 37 (2), pp. 121–128 (1998). Jiang, J., Graham, N.J.D., Harward, C., “Comparison of polyferric sulphate with other coagulants for the removal of algae-derived organic matter.” Water Sci. Technol, Vol. 27 (11), pp. 221–230 (1993). Jonas Långmark “Biofilms and microbial barriers in drinking water treatment and distribution.” Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH), (2004). Jun, H.B., Lee, Y.J., Lee, B.D., Knappe, D.R.U., “Effectiveness of coagulants and coagulant aids for the removal of filter clogging Synedra.” J. Water Supply: Res. Technol.-AQUA, Vol. 50 (3), pp. 135–148 (2001). Izydorczyk Katarzyna, Carpentier Corina, Mrówczyński Jarosław, Wagenvoort Arco, Jurczak Tomasz, Tarczyńska Małgorzata , “Establishment of an Alert Level Framework for cyanobacteria in drinking water resources by using the Algae Online Analyser for monitoring cyanobacterial chlorophyll a .” Water Research, Vol. 43(4), pp. 989-996 (2009). Knappe, D.R.U., Belk, C., Briley, D.S., Gandy, S.R., Rastogi, N., Rike, A.H., Glasgow, H., Hannon, E., Frazier, W.D., Kohl, P., Pugsley, S., “Algae Detection and Removal Strategies for DrinkingWater Treatment Plants.” American Water Works Association, pp. (2004). Konno, H., “Settling and coagulation of slender type diatoms.” Water Sci.Technol. Vol. 27 (11), pp. 231–240 (1993). Barsanti Laura and Gualtieri Paolo, “Algae :anatomy, biochemistry, and biotechnology.” CRC press, pp.15-23 (2006). Liu, J.C., Chen, Y.M., Ju, Y., “Separation of algal cells from water by column flotation.” Sci. Technol, Vol. 34 (11), pp. 2259–2272 (1999). Mouchet, P., Bonne´ lye, V., “Solving algae problems: French expertise and world-wild applications.” J. Water Services Res. Technol.-AQUA, Vol. 47(3), pp. 125-141 (1998). Myklestad, S.M. “Release of extracellular products by phytoplankton with special emphasis on polysaccharides.” The Science of the Total Enviroment, Vol. 165 , pp. 155-164 (1995). Dugan R. Nicholas , Williams J. Daniel, “Cyanobacteria passage through drinking water filters during perturbation episodes as a function of cell morphology, coagulant and initial filter loading rate.” Harmful Algae, Vol. 5, pp. 26–35 (2006). Rita Henderson, Simon A. Parsons, Bruce Jefferson, 2008. “The impact of algal properties and pre-oxidation on solid–liquid separation of algae.” Water research, Vol. 42, pp. 1827-1845 (2008). Steynberg, M.C., Pieterse, A.J.H., Geldenhuys, J.C., “Improved coagulation and filtration as a result of morphological and behavioural changes due to pre-oxidation.” J. Water Supply: Res. Technol.-AQUA , Vol. 45 (6), pp. 292–298 (1996). Phoochinda, W., and White, D. A., “Removal of algae using froth flotation.”, Environmental Technology, Vol. 24 (1), pp. 87-96 (2003) . Phycological Society of America, “Culture methods and growth measurements.”, Cambridge University Press, pp. 448 (1973).
摘要: 台灣地區地狹人稠,山坡陡峭、雨勢集中使得蓄水不易,雖年平均降雨量高達兩千公厘,卻因降雨時空分配不均使水資源明顯不足,依據聯合國全球水資源分配的調查,顯示台灣是全世界排名第十八的缺水國家(地區)。根據計算結果,台灣地區每人每年平均可以分配到的用水量,只有全世界平均用水量的七分之一,依用水標準而言,台灣屬於缺水型國家。 因此,必須興建水庫蓄水以提供民生、工業及國防穩定的水源。然而,近年來工業與畜牧業排放廢水對水源水質造成影響外,氣候變遷改變氣候型態,形成短時間內的暴雨及乾旱現象,使水庫蓄水量較以往不穩定,水質與水量雙重變化下,使得水處理必須提高程序上的應變能力,並設定處理的限值以提供操作參考的依據,以迅速解決問題。 其中鯉魚潭水庫位於苗栗縣內,其蓄水提供苗栗縣及大台中地區使用外,亦有發電、及農業灌溉等重要功能。近年由於鯉魚潭淨水廠於特定季節時,因原水異常使快濾池受藻類阻塞,導致濾程縮短、增加反沖洗頻率,在操作不正常下亦造成水質異常、水量提供受到影響。本研究在了解鯉魚潭水庫原水水質與淨水廠之淨水程序與處理效能後,於廠內設置一快濾池模場,探討不同操作條件下對於快濾池過濾效果的影響,同時也了解藻類於實廠中被攔截的情形。此外,亦利用實驗室小型模組試驗,探討藻類於濾料中貫穿情形,並了解種類與時間及空間的相對關係。 根據水庫藻類調查,於2009.08~2010.04採樣期間,水庫中藻類大致上可分為甲藻、綠藻、藍綠藻及矽藻四大類,其中出現數量最多的藻種為矽藻,而最常觀察到矽藻種類的為小環藻(Cycotella sp.)、曲殼藻(Achnanthes sp.)及針桿藻(Synedra sp.)。 於快濾池模場試程中,比較濾床填充單層濾料(sand)與填充雙層濾料(sand and anthracite)對於出水水質之影響,並提高濾床粒徑(sand,0.6 mm;anthracite,0.85 mm)探討對於過濾效果之影響,而在第二試程當中,即使進流水(總沉澱水)濁度偏高(平均2.55 NTU)情況下,顯示過濾效果佳,依然可維持出流水濁度<0.2 NTU,平均去除率為90~94 %。實驗室模組試程,則模擬當快濾池進流水中含大量藻類後濾池的狀況,所添加之藻種包括含多種藻類的環境樣品、魚腥藻(Anabaena sp.)、小球藻(Chlorella sp.)及柵藻(Desmodesmus sp.(Scenedesmus sp.)),根據試驗結果,以較高的濾料粒徑填充濾床,在過濾初期將無法攔阻水中大量藻類,即使在後期亦可能有貫穿的危機。
Although the average annual rainfall in Taiwan is as high as 2000 mm, water resources in Taiwan are still significantly insufficient because of the unequal distribution of rainfall in terms of time and space. According to the United Nations’ investigation of global water distribution, Taiwan was ranked 18th as a water-scarce region. Based on these results, the annual average water consumption in Taiwan area of each person is only one seventh of the world average. It is essential to construct water reservoirs in order to ensure stable quality and quantity of water supply. At the moment the illegal discharge of industry and livestock wastewater into the river or into the reservoir in combination with insufficient rainfall, which is caused by global climate change, changed the water quality and reduced its quantity. This forced the water supply plant to improve its adaptability and to set an operational cutoff point in order to resolve the unexpected problem as soon as possible. Li Yu Tan reservoir, which is located in Miaoli county, has the function of electric power generation, irrigation and water supply for Miaoli county and Taichung city area. Recently a large amount of algae has been found at specific periods (2008.11~12、2009.03). Meanwhile the rapid sand filter of water supply plant has been blocked, so the filter run has been shortened and the backwash frequency has to be increased. In this study, two rapid sand filter modules to simulate different operation conditions were constructed. One of the modules was set up in the Li Yu Tan drinking water supply plant in order to determine the plant operational state. The other module, smaller than the former, was set up in laboratory and used to simulate the situation when influent contains large quantities of algae. According to the investigation result (2009.08~2010.04), the algae found in Li Yu Tan reservoir were Dinoflagellates, Green algae, Cyanobacteria and Diatoms. The most abundant algae appear to be diatoms, including Cycotella sp., Achnanthes sp. and Synedra sp.. In the larger rapid sand filter module, experiments were conducted under various operating conditions including packed depth (70 and 65 cm), media characteristics (sand and anthracite) and different media diameters (0.6 and 0.85 mm) in order to observe the effect of effluent water quality. At the second test, under the influent (total precipitation water) of high turbidity (average 2.55 NTU) condition, the filter module was still able to maintain effluent turbidity of lower than 0.2 NTU. The average removal rate of 90 ~ 94% showed excellent efficiency. In the laboratory module test, the influent was added with different algae species including environment samples, Anabaena sp.、Chlorella sp. and Desmodesmus sp.(Scenedesmus sp.). The results showed that the filter packed with coarse filter media could not block most of the algae at the initial stage; even at the late stage the algae might breakthough the filter bed.
URI: http://hdl.handle.net/11455/5771
其他識別: U0005-2607201011001300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2607201011001300
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.