Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5779
標題: 受體模式PMF模擬結果之探討
A study on sources apportionment by using PMF as a receptor model
作者: 藍威麟
Lan, Wei-Lin
關鍵字: Receptor model
受體模式
PMF
sample sizes
percentage
uncertainty
正矩陣因子法
樣本數
百分比
不確定性
出版社: 環境工程學系所
引用: Adachi, K. and Y. Tainosho, “Characterization of heavy metal particles embedded in tire dust,” Environment international, Vol. 30, No. 8, pp. 1009-1017 (2004). Alleman, L. Y., L. Lamaison, E. Perdrix, A. Robache and J. C. Galloo, “PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone,” Atmospheric Research, Vol. 96, No. 4, pp. 612-625 (2010). Amato, F., M. Pandolfi, A. Escrig, X. Querol, A. Alastuey, J. Pey, N. Perez and P. K. Hopke, “Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2,” Atmospheric Environment, Vol. 43, No. 17, pp. 2770-2780 (2009). Baumann, K., R. K. Jayanty and J. B. Flanagan, “Fine particulate matter source apportionment for the chemical speciation trends network site at Birmingham, Alabama, using positive matrix factorization,” Journal of the Air and Waste Management Association, Vol. 58, No. 1, pp. 27-44 (2008). Callén, M. S., M. T. de la Cruz, J. M. López, M. V. Navarro and A. M. Mastral, “Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain),” Chemosphere, Vol. 76, No. 8, pp. 1120-1129 (2009). Calvert, J. G. and W. R. Stockwell, “Mechanism and rates of the gas phase oxidations of sulfur dioxide and the nitrogen oxides in the atmosphere,” Department of Chemistry, PB-83-231324, Ohio State University, Columbus, OH (1983). Chan, C. Y., X. D. Xu, Y. S. Li, K. H. Wong, G. A. Ding, L. Y. Chan and X. H. Cheng, “Characteristics of vertical profiles and sources of PM2.5, PM10 and carbonaceous species in Beijing,” Atmospheric Environment, Vol. 39, No. 28, pp. 5113-5124 (2005). Chang, C. Y., C. F. Wang, D. T. Mui, M. T. Cheng and H. L. Chiang, “Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan,” Journal of Hazardous Materials, Vol. 165, No. 1-3, pp. 766-773 (2009). Charron, A. and R. M. Harrison, “Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere,” Atmospheric Environment, Vol. 37, No. 29, pp. 4109-4119 (2003). Chen, K. S., C. F. Lin and Y. M. Chou, “Determination of source contributions to ambient PM2.5 in Kaohsiung, Taiwan, using a receptor model,” Journal of the Air & Waste Management Association, Vol. 51, No. 4, pp. 489 (2001). Cheng, M. T. and Y. I. Tsai, “Characterization of visibility and atmospheric aerosols in urban, suburban and remote areas,” Science of the Total Environment, Vol. 263, No. 1-3, pp. 101-114 (2000). Cheng, M. T., C. P. Chio, C. Y. Huang, J. M. Chen, C. F. Wang and C. Y. Kuo, “Chemical compositions of fine particulates emitted from oil-fired boilers,” Journal of Environmental Engineering and Management, Vol. 18, No. 5, pp. 355-362 (2008). Chio, C. P., M. T. Cheng and C. F. Wang, “Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan,” Atmospheric Environment, Vol. 38, No. 39, pp. 6893-6905 (2004). Chiou, P., W. Tang, C. J. Lin, H. W. Chu, R. Tadmor and T. C. Ho, “Atmospheric Aerosols over a Southwestern Region of Texas,” Environmental Modeling and Assessment, Vol. 14, No. 5, pp. 645-659 (2009a). Chiou, P., W. Tang, C. J. Lin, H. W. Chu and T. C. Ho, “Atmospheric Aerosol over a Southeastern Region of Texas: Chemical Composition and Possible Sources,” Environmental Modeling and Assessment, Vol. 14, No. 3, pp. 333-350 (2009b). Chow, J. C., “Measurement methods to determine compliance with ambient air quality standards for suspended particles,” Journal of the Air & Waste Management Association, Vol. 45, No. 5, pp. 320-382 (1995). Christian, T. J., R. J. Yokelson, B. Cardenas, L. T. Molina, G. Engling and S. Hsu, “Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico,” Atmospheric Chemistry and Physics, Vol. 10, No. 2, pp. 565-584 (2010). Cohen, D. D., J. Crawford, E. Stelcer and V. T. Bac, “Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008,” Atmospheric Environment, Vol. 44, No. 3, pp. 320-328 (2010). Core, D. D., J. Crawford, E. Stelcer and V. T. Bac, “ Receptor Model Source Composition Library,” U.S. EPA, EPA-450/4-85-002, Research Triangle Park, NC (1984). Currie, L. A., R. W. Gerlach, C. W. Lewis, W. D. Balfour, J. A. Cooper, S. L. Dattner, R. T. De Cesar, G. E. Gordon, S. L. Heisler and P. K. Hopke, “Interlaboratory comparison of source apportionment procedures: results for simulated data sets,” Atmospheric Environment Vol. 18, No. 8, pp. 1517-1537 (1984). Dalessandro, R. and P. Mazzei, “A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy,” Atmospheric Environment, Vol. 42, No. 9, pp. 2240-2253 (2008). Dogan, G., G. Gullu and G. Tuncel, “Sources and source regions effecting the aerosol composition of the Eastern Mediterranean,” Microchemical Journal, Vol. 88, No. 2, pp. 142-149 (2008). Eberly, S. “EPA PMF 1.0 User''s Guide” (2004).Available at http://www.epa.gov/heasd/products/pmf/pmf.html. Fabretti, J. F., N. Sauret, J. F. Gal, P. C. Maria and U. Schärer, “Elemental characterization and source identification of PM2.5 using Positive Matrix Factorization: The Malraux road tunnel, Nice, France,” Atmospheric Research, Vol. 94, No. 2, pp. 320-329 (2009). Gao, N., A. E. Gildemeister, K. Krumhansl, K. Lafferty, P. K. Hopke, E. Kim and R. L. Poirot, “Sources of Fine Particulate Species in Ambient Air over Lake Champlain Basin, VT,” Journal of the Air & Waste Management Association, Vol. 56, No. 11, pp. 1607-1620 (2006). Gildemeister, A. E., P. K. Hopke and E. Kim, “Sources of fine urban particulate matter in Detroit, MI,” Chemosphere, Vol. 69, No. 7, pp. 1064-1074 (2007). Hammond, D. M., J. T. Dvonch, G. J. Keeler, E. A. Parker, A. S. Kamal, J. A. Barres, F. Y. Yip and W. Brakefield-Caldwell, “Sources of ambient fine particulate matter at two community sites in Detroit, Michigan,” Atmospheric Environment, Vol. 42, No. 4, pp. 720-732 (2008). Healy, R. M., S. Hellebust, I. Kourtchev, A. Allanic, I. P. O''Connor, J. M. Bell, J. R. Sodeau and J. C. Wenger, “Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements,” Atmospheric Chemistry & Physics Discussions, Vol. 10, No. 1, pp. 1035-1082 (2010). Hellebust, S., A. Allanic, I. P. O''Connor, J. C. Wenger and J. R. Sodeau, “The use of real-time monitoring data to evaluate major sources of airborne particulate matter,” Atmospheric Environment, Vol. 44, No. 8, pp. 1116-1125 (2010). Heo, J. B., P. K. Hopke and S. M. Yi, “Source apportionment of PM2.5 in Seoul, Korea,” Atmospheric Chemistry & Physics Discussions, Vol. 9, No. 14, pp. 4957-4971 (2009). Hinds, W. C., Aerosol technology: properties, behavior, and measurement of airborne particles, John Wiley & Sons Inc., New York (1998). Hopke, P. K., Receptor modeling for air quality management, Elsevie, New York, (1991). Hsu, S. C., S. C. Liu, C. Y. Lin, R. T. Hsu, Y. T. Huang and Y. W. Chen, “Metal Compositions of PM10 and PM2.5 aerosols in Taipei during Spring, 2002,” Terrestrial Atmospheric Oceanic Sciences, Vol. 15, No. 5, pp. 925-948 (2004). Hsu, S. C., S. C. Liu, Y. T. Huang, C. C. K. Chou, S. C. C. Lung, T. H. Liu, J. Y. Tu and F. J. Tsai, “Long-range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in Northern Taiwan,” Journal of Geophysical Research-Atmospheres, Vol. 114, D14301, doi: 10.1029/2009jd011725 (2009). Huang, X. F., J. Z. Yu, Z. Yuan, A. K. H. Lau and P. K. K. Louie, “Source analysis of high particulate matter days in Hong Kong,” Atmospheric Environment, Vol. 43, No. 6, pp. 1196-1203 (2009). Iijima, A., K. Sato, Y. Fujitani, E. Fujimori, Y. Saito, K. Tanabe, T. Ohara, K. Kozawa and N. Furuta, “Clarification of the predominant emission sources of antimony in airborne particulate matter and estimation of their effects on the atmosphere in Japan,” Environmental Chemistry, Vol. 6, No. 2, pp. 122-132 (2009). Ito, K., N. Xue and G. Thurston, “Spatial variation of PM2.5 chemical species and source-apportioned mass concentrations in New York City,” Atmospheric Environment, Vol. 38, No. 31, pp. 5269-5282 (2004). Jang, H. N., Y. C. Seo, J. H. Lee, K. W. Hwang, J. I. Yoo, C. H. Sok and S. H. Kim, “Formation of fine particles enriched by V and Ni from heavy oil combustion: Anthropogenic sources and drop-tube furnace experiments,” Atmospheric Environment, Vol. 41, No. 5, pp. 1053-1063 (2007). Jayasekher, T., “Aerosols near by a coal fired thermal power plant: Chemical composition and toxic evaluation,” Chemosphere, Vol. 75, No. 11, pp. 1525-1530 (2009). Jeong, C. H., G. J. Evans, T. Dann, M. Graham, D. Herod, E. Dabek-Zlotorzynska, D. Mathieu, L. Ding and D. Wang, “Influence of biomass burning on wintertime fine particulate matter: Source contribution at a valley site in rural British Columbia,” Atmospheric Environment, Vol. 42, No. 16, pp. 3684-3699 (2008). John, W., S. M. Wall, J. L. Ondo and W. Winklmayr, “Modes in the size distributions of atmospheric inorganic aerosol,” Atmospheric Environment. Part A. General Topics, Vol. 24, No. 9, pp. 2349-2359 (1990). Kappos, A. D., P. Bruckmann, T. Eikmann, N. Englert, U. Heinrich, P. Höppe, E. Koch, G. H. M. Krause, W. G. Kreyling, K. Rauchfuss, P. Rombout, V. Schulz-Klemp, W. R. Thiel and H. E. Wichmann, “Health effects of particles in ambient air,” International Journal of Hygiene and Environmental Health, Vol. 207, No. 4, pp. 399-407 (2004). Karageorgos, E. T. and S. Rapsomanikis, “Assessment of the sources of the inorganic fraction of aerosol in a conurbation,” International Journal of Environmental Analytical Chemistry, Vol. 90, No. 1, pp. 64-83 (2010). Karanasiou, A. A., P. A. Siskos and K. Eleftheriadis, “Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions,” Atmospheric Environment, Vol. 43, No. 21, pp. 3385-3395 (2009). Ke, L., W. Liu, Y. Wang, A. G. Russell, E. S. Edgerton and M. Zheng, “Comparison of PM2. 5 source apportionment using positive matrix factorization and molecular marker-based chemical mass balance,” Science of The Total Environment, Vol. 394, No. 2-3, pp. 290-302 (2008). Kim, E. and P. K. Hopke, “Comparison between sample-species specific uncertainties and estimated uncertainties for the source apportionment of the speciation trends network data,” Atmospheric Environment, Vol. 41, No. 3, pp. 567-575 (2007a). Kim, E. and P. K. Hopke, “Source identifications of airborne fine particles using positive matrix factorization and US Environmental Protection Agency positive matrix factorization,” Journal of the Air & Waste Management Association, Vol. 57, No. 7, pp. 811-819 (2007b). Kim, E. and P. K. Hopke, “Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions,” Journal of the Air & Waste Management Association, Vol. 54, No. 7, pp. 773-785 (2004). Kim, E. and P. K. Hopke, “Source characterization of ambient fine particles at multiple sites in the Seattle area,” Atmospheric Environment, Vol. 42, No. 24, pp. 6047-6056 (2008). Kim, E., P. K. Hopke and E. S. Edgerton, “Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization,” Atmospheric Environment, Vol. 38, No. 20, pp. 3349-3362 (2004). Kim, E., P. K. Hopke and E. S. Edgerton, “Source identification of atlanta aerosol by positive matrix factorization,” Journal of the Air & Waste Management Association, Vol. 53, No. 6, pp. 731-739 (2003). Kim, E., P. K. Hopke and Y. J. Qin, “Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment,” Journal of the Air & Waste Management Association, Vol. 55, No. 8, pp. 1190-1199 (2005a). Kim, E., P. K. Hopke, D. M. Kenski and M. Koerbers, “Sources of fine particles in a rural midwestern US area,” Environmental Science & Technology, Vol. 39, No. 13, pp. 4953-4960 (2005b). Kim, E., P. K. Hopke, J. P. Pinto and W. E. Wilson, “Spatial variability of fine particle mass, components and source contributions during the regional air pollution study in St. Louis,” Environmental Science & Technology, Vol. 39, No. 11, pp. 4172-4179 (2005c). Kukkonen, J. and M. Pohjola, “Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo,” Atmospheric Environment, Vol. 39, No. 15, pp. 2759-2773 (2005). Kuo, C. Y., J. Y. Wang, S. H. Chang and M. C. Chen, “Study of metal concentrations in the environment near diesel transport routes,” Atmospheric Environment, Vol. 43, No. 19, pp. 3070-3076 (2009). Laupsa, H., B. Denby, S. Larssen and J. Schaug, “Source apportionment of particulate matter (PM2.5) in an urban area using dispersion, receptor and inverse modelling,” Atmospheric Environment, Vol. 43, No. 31, pp. 4733-4744 (2009). Lawson, C. L. and R. J. Hanson, Solving least squares problems, Society for Industrial & Applied, New Jersey (1974). Lee, J. H. and P. K. Hopke, “Apportioning sources of PM2.5 in St. Louis, MO using speciation trends network data,” Atmospheric Environment, Vol. 40, Supplement 2, pp. 360-377 (2006). Lee, J. H., Y. Yoshida, B. J. Turpin, P. K. Hopke, R. L. Poirot, P. J. Lioy and J. C. Oxley, “Identification of sources contributing to Mid-Atlantic regional aerosol,” Journal of the Air & Waste Management Association , Vol. 52, No. 10, pp. 1186-1205 (2002). Lestari, P. and Y. D. Mauliadi, “Source apportionment of particulate matter at urban mixed site in Indonesia using PMF,” Atmospheric Environment, Vol. 43, No. 10, pp. 1760-1770 (2009). Lim, J. M., J. H. Lee, J. H. Moon, Y. S. Chung and K. H. Kim, “Source apportionment of PM10 at a small industrial area using Positive Matrix Factorization,” Atmospheric Research, Vol. 95, No. 1, pp. 88-100 (2010). Liu, W., Y. Wang, A. Russell and E. S. Edgerton, “Atmospheric aerosol over two urban-rural pairs in the southeastern United States: Chemical composition and possible sources,” Atmospheric Environment, Vol. 39, No. 25, pp. 4453-4470 (2005). Marmur, A., A. Unal, J. A. Mulholland and A. G. Russell, “Optimization-based source apportionment of PM2.5 incorporating gas-to-particle ratios,” Environmental Science & Technology, Vol. 39, No. 9, pp. 3245-3254 (2005). Maykut, N. N., J. Lewtas, E. Kim and T. V. Larson, “Source apportionment of PM2. 5 at an urban IMPROVE site in Seattle, Washington,” Environmental Science & Technology, Vol. 37, No. 22, pp. 5135-5142 (2003). Mazzei, F., A. D''Alessandro, F. Lucarelli, S. Nava, P. Prati, G. Valli and R. Vecchi, “Characterization of particulate matter sources in an urban environment,” Science of The Total Environment, Vol. 401, No. 1-3, pp. 81-89 (2008). Mehta, B., C. Venkataraman, M. Bhushan and S. N. Tripathi, “Identification of sources affecting fog formation using receptor modeling approaches and inventory estimates of sectoral emissions,” Atmospheric Environment, Vol. 43, No. 6, pp. 1288-1295 (2009). Nicolás, J., M. Chiari, J. Crespo, I. G. Orellana, F. Lucarelli, S. Nava, C. Pastor and E. Yubero, “Quantification of Saharan and local dust impact in an arid Mediterranean area by the positive matrix factorization (PMF). technique,” Atmospheric Environment, Vol. 42, No. 39, pp. 8872-8882 (2008). Norris, G. and R. Vedantham. “EPA PMF 3.0 Fundamentals & User Guide” (2008). Available at: http://www.epa.gov/heasd/products/pmf/pmf.html. Oanh, K., N. Thi, W. Thiansathit, T. C. Bond, R. Subramanian, E. Winijkul and I. Paw-armart, “Compositional characterization of PM2.5 emitted from in-use diesel vehicles,” Atmospheric Environment, Vol. 44, No. 1, pp. 15-22 (2010). Oberdorster, G. “Nanotoxicology: An emerging discipline,” International Symposium on Environmental Nanotechnology, Tapei, pp. 71-79 (2004). Ogulei, D., P. K. Hopke, L. M. Zhou, P. Paatero, S. S. Park and J. Ondov, “Receptor modeling for multiple time resolved species: The Baltimore, supersite,” Atmospheric Environment, Vol. 39, No. 20, pp. 3751-3762 (2005). Okuda, T., M. Katsuno, D. Naoi, S. Nakao, S. Tanaka, K. He, Y. Ma, Y. Lei and Y. Jia, “Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006,” Chemosphere, Vol. 72, No. 6, pp. 917-924 (2008). Oyama, B. S. and M. D. F. Andrade, “Application of Positive Matrix Factorization for atmospheric aerosols sources identification in Sao Paulo city,” 16th Conference on Air Pollution Meteorology, Atlanta, GA (2010). Paatero, P. and U. Tapper, “Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values,” Environmetrics, Vol. 5, No. 2, pp. 111-126 (1994). Paatero, P., “Least squares formulation of robust non-negative factor analysis,” Chemometrics and Intelligent Laboratory Systems, Vol. 37, No. 1, pp. 23-35 (1997). Paatero, P., “The multilinear engine: a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model,” Journal of Computational and Graphical Statistics, Vol. 8, No. 4, pp. 854-888 (1999). Paatero, P., “User''s guide for positive matrix factorization programs PMF2 and PMF3, Part 1: tutorial & Part 2: reference,” Pandolfi, M., M. Viana, M. C. Minguillon, X. Querol, A. Alastuey, F. Amato, I. Celades, A. Escrig and E. Monfort, “Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: Comparison of source apportionment results,” Atmospheric Environment, Vol. 42, No. 40, pp. 9007-9017 (2008). Peterson, J. T., The climate of cities: A survey of recent literature, US National Air Pollution Control Administration, North Carolina (1969). Pilinis, C. and J. H. Seinfeld, “Development and evaluation of an Eulerian photochemical gas-aerosol model,” Atmospheric Environment, Vol. 22, No. 9, pp. 1985-2001 (1988). Pryor, S. C. and R. J. Barthelmie, “REVEAL II: Seasonality and spatial variability of particle and visibility conditions in the Fraser Valley,” The Science of the Total Environment, Vol. 257, No. 2-3, pp. 95-110 (2000). Querol, X., M. Viana, A. Alastuey, F. Amato, T. Moreno, S. Castillo, J. Pey, J. De la Rosa, A. Sanchez de la Campa and B. Artinano, “Source origin of trace elements in PM from regional background, urban and industrial sites of Spain,” Atmospheric Environment, Vol. 41, No. 34, pp. 7219-7231 (2007). Rahn, K. A., “A graphical technique for determining major components in a mixed aerosol. I. Descriptive aspects,” Atmospheric Environment, Vol. 33, No. 9, pp. 1441-1455 (1999). Raja, S., K. F. Biswas, L. Husain and P. K. Hopke, “Source Apportionment of the Atmospheric Aerosol in Lahore, Pakistan,” Water Air and Soil Pollution, Vol. 208, No. 1-4, pp. 43-57 (2010). Ramadan, Z., X. H. Song and P. K. Hopke, “Identification of sources of Phoenix aerosol by positive matrix factorization,” Journal of the Air & Waste Management Association, Vol. 50, No. 8, pp. 1308-1320 (2000). Raman, R. S. and P. K. Hopke, “Source apportionment of fine particles utilizing partially speciated carbonaceous aerosol data at two rural locations in New York State,” Atmospheric Environment, Vol. 41, No. 36, pp. 7923-7939 (2007). Reddy, M. S., S. Basha, H. V. Joshi and B. Jha, “Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion,” Journal of Hazardous Materials, Vol. 123, No. 1-3, pp. 242-249 (2005). Reff, A., S. I. Eberly and P. V. Bhave, “Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods,” Journal of the Air & Waste Management Association, Vol. 57, No. 2, pp. 146-154 (2007). Santoso, M., P. K. Hopke, A. Hidayat and L. Diah Dwiana, “Sources identification of the atmospheric aerosol at urban and suburban sites in Indonesia by positive matrix factorization,” Science of The Total Environment, Vol. 397, No. 1-3, pp. 229-237 (2008). Seinfeld, J. H., Atmospheric chemistry and physics of air pollution, John Wiley & Sons, Inc., New York, (1986). Sharma, M. and S. Maloo, “Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India,” Atmospheric Environment, Vol. 39, No. 33, pp. 6015-6026 (2005). Smichowski, P., D. Gomez, C. Frazzoli and S. Caroli, “Traffic-Related Elements in Airborne Particulate Matter,” Applied Spectroscopy Reviews, Vol. 43, No. 1, pp. 23-49 (2008). Song, X. H., N. K. M. Faber, P. K. Hopke, D. T. Suess, K. A. Prather, J. J. Schauer and G. R. Cass, “Source apportionment of gasoline and diesel by multivariate calibration based on single particle mass spectral data,” Analytica Chimica Acta, Vol. 446, No. 1-2, pp. 327-341 (2001). Song, Y., W. Dai, X. Wang, M. Cui, H. Su, S. Xie and Y. Zhang, “Identifying Dominant Sources of Respirable Suspended Particulates in Guangzhou, China,” Environmental Engineering Science, Vol. 25, No. 7, pp. 959-968 (2008). Tauler, R., M. Viana, X. Querol, A. Alastuey, R. M. Flight, P. D. Wentzell and P. K. Hopke, “Comparison of the results obtained by four receptor modelling methods in aerosol source apportionment studies,” Atmospheric Environment, Vol. 43, No. 26, pp. 3989-3997 (2009). Thimmaiah, D., J. Hovorka and P. K. Hopke, “Source Apportionment of Winter Submicron Prague Aerosols from Combined Particle Number Size Distribution and Gaseous Composition Data,” Aerosol and Air Quality Research, Vol. 9, No. 2, pp. 209-236 (2009). Thomas, C. “EPA-CMB8.2 Users Manual” (2004).Available at: http://www.epa.gov/ttn/scram/receptor_cmb.htm. Thurston, G. D. and J. D. Spengler, “A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston,” Atmospheric Environment, Vol. 19, No. 1, pp. 9-25 (1985). Tsai, J. H., K. H. Lin, C. Y. Chen, J. Y. Ding, C. G. Choa and H. L. Chiang, “Chemical constituents in particulate emissions from an integrated iron and steel facility,” Journal of Hazardous Materials, Vol. 147, No. 1-2, pp. 111-119 (2007). Tsai, Y. I., “Atmospheric visibility trends in an urban area in Taiwan 1961-2003,” Atmospheric Environment, Vol. 39, No. 30, pp. 5555-5567 (2005). Turpin, B. J. and J. J. Huntzicker, “Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS,” Atmospheric Environment, Vol. 29, No. 23, pp. 3527-3544 (1995). Vecchi, R., M. Chiari, A. D''Alessandro, P. Fermo, F. Lucarelli, F. Mazzei, S. Nava, A. Piazzalunga, P. Prati, F. Silvani and G. Valli, “A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy,” Atmospheric Environment, Vol. 42, No. 9, pp. 2240-2253 (2008). Viana, M., F. Amato, A. Alastuey, X. Querol, T. Moreno, S. Garci a Dos Santos, M. D. Herce and R. Fernandez-Patier, “Chemical Tracers of Particulate Emissions from Commercial Shipping,” Environmental Science & Technology, Vol. 43, No. 19, pp. 7472-7477 (2009). Wang, C. F., C. Y. Chang, S. F. Tsai and H. L. Chiang, “Characteristics of road dust from different sampling sites in northern Taiwan,” Journal of the Air & Waste Management Association, Vol. 55, No. 8, pp. 1236-1244 (2005). Wang, H. L., Y. H. Zhuang, Y. Wang, Y. Sun, H. Yuan, G. S. Zhuang and Z. P. Hao, “Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China,” Journal of Environmental Sciences, Vol. 20, No. 11, pp. 1323-1327 (2008). Wang, S. Z., “Generation and interpretation of source-apportionment models of airborne particles with application to both a simple and a moderately complex urban airshed,” Ph. D. Dissertation,Department of Civil Engineering, Washington University, Seattle, WA (1991). Wang, Y. F., Y. I. Tsai, H. H. Mi, H. H. Yang and Y. F. Chang, “PM 10 Metal Distribution in an Industrialized City,” Bulletin of environmental contamination and toxicology, Vol. 77, No. 4, pp. 624-630 (2006). Watson, J. G., J. A. Cooper and J. J. Huntzicker, “The effective variance weighting for least squares calculations applied to the mass balance receptor model,” Atmospheric Environment, Vol. 18, No. 7, pp. 1347-1355 (1984). Watson, J. G., L. Chen, J. C. Chow, P. Doraiswamy and D. H. Lowenthal, “Source Apportionment: Findings from the US Supersites Program,”Journal of the Air & Waste Management Association, Vol. 58, No. 2, pp. 265-288 (2008). Whitby, K. T. and B. Cantrell, “Atmospheric aerosols Characteristics and measurement, “ International Conference on Environmental Sensing and Assessment, Las Vegas, (1976). Whitby, K. T. and G. M. Sverdrup, “California aerosols-their physical and chemical characteristics,” Advances in Environmental Science and Technology, Vol. 9, pp. 477-517 (1980). Wolff, G. T., “On the nature of nitrate in coarse continental aerosols,” Atmospheric Environment, Vol. 18, No. 5, pp. 977-981 (1984). Xie, S. D., Z. Liu, T. Chen and L. Hua, “Spatiotemporal variations of ambient PM10 source contributions in Beijing in 2004 using positive matrix factorization,” Atmospheric Chemistry and Physics, Vol. 8, No. 10, pp. 2701-2716 (2008). Yatkin, S. and A. Bayram, “Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey,” Science of the Total Environment, The, Vol. 390, No. 1, pp. 109-123 (2008). Yoshizumi, K. and A. Hoshi, “Size distributions of ammonium nitrate and sodium nitrate in atmospheric aerosols,” Environmental Science & Technology, Vol. 19, No. 2, pp. 258-261 (1985). Yuan, H., G. S. Zhuang, J. Li and Z. F. Wang, “Mixing of mineral with pollution aerosols in dust season in Beijing: Revealed by source apportionment study,” Atmospheric Environment, Vol. 42, No. 9, pp. 2141-2157 (2008). Yuan, Z. B., A. K. H. Lau, H. Y. Zhang, J. Z. Yu, P. K. K. Louie and J. C. H. Fung, “Identification and spatiotemporal variations of dominant PM10 sources over Hong Kong,” Atmospheric Environment, Vol. 40, No. 10, pp. 1803-1815 (2006). Zabalza, J., D. Ogulei, P. Hopke, J. Lee, I. Hwang, X. Querol, A. Alastuey and J. Santamaría, “Concentration and Sources of PM10 and its Constituents in Alsasua, Spain,” Water Air & Soil Pollution, Vol. 174, No. 1, pp. 385-404 (2006). Zhang, Y. X., R. J. Sheesley, M. S. Bae and J. J. Schauer, “Sensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations,” Atmospheric Environment, Vol. 43, No. 32, pp. 4951-4958 (2009). Zheng, M., D. R. Kester, F. Wang, X. M. Shi and Z. G. Guo, “Size distribution of organic and inorganic species in Hong Kong aerosols during the wet and dry seasons,” Journal of Geophysical Research-Atmospheres, Vol. 113, D16303, doi: 10.1029/2007jd009494 (2008). Zheng, M., L. G. Salmon, J. J. Schauer, L. Zeng, C. S. Kiang, Y. Zhang and G. R. Cass, “Seasonal trends in PM2.5 source contributions in Beijing, China,” Atmospheric Environment, Vol. 39, No. 22, pp. 3967-3976 (2005). Zhou, L., P. K. Hopke and W. Zhao, “Source Apportionment of Airborne Particulate Matter for the Speciation Trends Network Site in Cleveland, OH,” Journal of the Air and Waste Management Association, Vol. 59, No. 3, pp. 321-331 (2009). Zota, A. R., R. Willis, R. Jim, G. A. Norris, J. P. Shine, R. M. Duvall, L. A. Schaider and J. D. Spengler, “Impact of Mine Waste on Airborne Respirable Particulates in Northeastern Oklahoma, United States,” Journal of the Air & Waste Management Association, Vol. 59, No. 11, pp. 1347-1357 (2009). 高仁和, “以測站平行檢測及逆軌跡模式探討潮州地區高PM10濃度之成因,” 碩士,環境工程與科學系, 屏東科技大學, 屏東縣 (2002). 李惠敏, “硫酸鹽與硝酸鹽在受體模式中之探討,” 碩士論文,環境工程學系, 國立中興大學, 台中市 (2003). 沈明來, 實用多變數分析, 九州, 台北市, (2007).
摘要: 一般文獻皆係利用PMF2作為污染源的解析,並未探討其模式之合理性,因此本研究將透過製作出三種不同狀況條件下之周界濃度樣本來進行探討PMF2之合理性,而其三種案例依序為(1)周界各成分濃度之不確性對PMF2之影響。(2)各成分質量加總後佔PM總質量之百分比對PMF2之影響。(3)樣本數目對PMF2之影響。另因PMF2係以目標函數Q值作為判定污染源數目之依據,因此能否於各案例組成條件下,依然正確判定出污染源數目,本問題將於各案例最後加以探討。本研究污染源之選擇,係以相似性高之污染源為探討對象,本研究所用污染源為海鹽飛沫、煉鋼廠、柴油車、汽油車、街塵、河川揚塵和焚化爐。 本研究結果顯示,樣本各成分濃度之不確定性對PMF2的解析結果(污染源指紋和污染源貢獻量)無顯著之影響,且模式解析結果之合理性會隨著不同的各成分質量加總後佔PM總質量之百分比增加而提升;至於樣本數目方面,當樣本數目較少(例如僅有10筆時),在污染源解析和污染源貢獻量,模式之合理性皆較不理想。而當樣本數目較多(大於30),模式的解析無顯著之差異;關於污染源貢獻量部分,皆與實際貢獻量變化趨勢相同,但皆有高估之情況。本研究亦發現,無論是否將大氣懸浮微粒總質量納入模式中解析,其模式之解析結果並無差異,但於合理性上以不將總質量納入模式中解析顯著較佳。而最後於各案例之模擬Q值部分發現, 模擬Q值並未如文獻所提之落入±50%之理論Q值中,且受樣本各成分濃度之不確定性影響極大。
Recent studies analysis the sources by using PMF2, but did not discuss the reasonableness of this model, so this study will be produced concentrations of the ambient as samples under three different conditions to measured to explore the reasonable of PMF2, and there are three types of cases by order to (1) the uncertainty of concentration by each samples to impact on PMF2. (2) different sum of mass components to account for the percentage of the total PM mass the effect on PMF2. (3) the influence by different number of sample on PMF2. In addition, because objective function Q value for PMF2 as the basis to determining the number of pollution sources, thus below on the cases in this study with the composition conditions, still correctly determine the number of pollution source will be explored at the last. In this study, there were choice of sources with high similarity to pollution sources as a case study, the sources used in this study include of the marine spray, steel plant, diesel vehicles, gasoline vehicles, road dust, river dust, and incinerator. The results showed the analyzed for uncertainty of each sample concentration by PMF2 (fingerprints of pollution source and the contribution) not effects significant, the rationality of the model results which increase with the different sum of mass components to account for the percentage of the total PM mass; As the number of samples, when less of samples,(for example, only 10 of the samples), the results of analyzed the contributions of pollution sources were not ideal, on the other hand, when more of samples(more than 30 of the samples), the analyzed result were not significant; on the contributions of the pollution sources, the varied were similar with the actual contributions, but have the situation of overestimate. The study also found that, regardless of whether input the total mass of suspended particles in the atmosphere to analysis, there is no different of the analyzed results by the model, but on the reasonableness there showed more better result without input the total mass in this model. The last case of this study was for the simulation of Q values, however found the result of Q values were not fall into the 50% of the theoretical Q values as the conclusion of literature, and were greatly influenced from the uncertainty by the component of each samples with different concentration.
URI: http://hdl.handle.net/11455/5779
其他識別: U0005-2906201001470700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2906201001470700
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.