請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5787
標題: Alachlor進行高級處理之可行性研究
Feasibility study on the advanced treatment of Alachlor
作者: 張筱薇
Chang, Hsiao-Wei
關鍵字: Alachlor
Alachlor
高級處理
混凝膠凝
活性碳
過氧化氫
二氧化鈦
Advanced oxidation process
Coagulation–flocculation
Activated carbon
Hydrogen peroxide
Titanium dioxide
出版社: 環境工程學系所
引用: 1. 中文部分 (1)圖書 胡振國譯,1989「半導體元件-物理與技術」,全華圖書公司。 趙成琛,1985「界面科學基礎」,復文書局。 (2)期刊論文 王瀞儀(2012),以N-TiO2固定態光觸媒利用太陽光礦化雙酚A之研究,碩士論文,國立中興大學環境工程學系。 洪雲傑(2006),以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究,碩士論文,國立中興大學環境工程學系。 連建智(2010),利用光催化反應處理染整廢水之可行性研究,碩士論文,國立中興大學環境工程學系。 黃楷茗(2007),微波反應活性碳循環床處理半導體業排放異丙醇與丙酮廢棄之研究,碩士論文,國立台北科技大學環境規劃與管理學系。 蔡安東(2007),化學活化法製備孟宗竹活性碳製程之研究,碩士論文,國立雲林科技大學化學工程與材料工程學系。 蔡明穎(2012),以UV/H2O2光催化處理實場染整廢水之可行性研究,碩士論文,國立中興大學環境工程學系。 (3)網路資源 行政院農業委員會動植物防疫檢疫局 http://pesticide.baphiq.gov.tw/web/Insecticides_MenuItem1.aspx 行政院國家永續發展委員會全球資訊網 http://nsdn.epa.gov.tw/CH/DEVELOPMENT/INDEX.HTM 放流水標準 http://ivy5.epa.gov.tw/epalaw/search/LordiDispFull.aspx?ltype=06&lname=0060 (4)其他 王順成、何琦琛(2010),「農藥對台灣環境生態之影響」,農業生態系與生物多樣性研討會,第53-63頁。 2. 英文部分 (1) Books Thompson, J. M., Chisholm,B. J. and Bezbaruah, A. N. (2010). Reductive Dechlorination of Chloroacetanilide Herbicide (Alachlor) Using Zero-Valent Iron Nanoparticles. Newcombe,G. (2008). Adsorption From Aqueous Solutions:Water Purification. (2) Journal Articles Abdullah, F. H., Rauf, M. A., and Ashraf, S. S. (2007). "Photolytic oxidation of Safranin-O with H2O2." Dyes and Pigments, 72(3), 349-352. Adachi, Y., Kobayashi, A., and Kobayashi, M. (2012). "Structure of Colloidal Flocs in relation to the Dynamic Properties of Unstable Suspension." International Journal of Polymer Science, 2012, 1-14. Ahmed, S., Rasul, M. G., Brown, R., and Hashib, M. A. (2011). "Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review." Journal of Environmental Management, 92(3), 311-330. Aleboyeh, A., Moussa, Y., and Aleboyeh, H. (2005). "The effect of operational parameters on UV/H2O2 decolourisation of Acid Blue 74." Dyes and Pigments, 66(2), 129-134. Alfano, O. M., Brandi, R. J., and Cassano, A. E. (2001). "Degradation kinetics of 2,4-D in water employing hydrogen peroxide and UV radiation." Chemical Engineering Journal, 82(1–3), 209-218. Barakat, M. A. (2011). "Adsorption and photodegradation of Procion yellow H-EXL dye in textile wastewater over TiO2 suspension." Journal of Hydro-environment Research, 5(2), 137-142. Bezbaruah, A. N., Thompson, J. M., and Chisholm, B. J. (2009). "Remediation of alachlor and atrazine contaminated water with zero-valent iron nanoparticles." Journal Environment Science Health, part B, 44(6), 518-524. Carp, O. (2004). "Photoinduced reactivity of titanium dioxide." Progress in Solid State Chemistry, 32(1-2), 33-177. Chelme-Ayala, P., El-Din, M. G., and Smith, D. W. (2010). "Degradation of bromoxynil and trifluralin in natural water by direct photolysis and UV plus H2O2 advanced oxidation process." Water Research, 44(7), 2221-2228. Chirnside, A. E. M., Ritter, W. F., and Radosevich, M. (2007). "Isolation of a selected microbial consortium from a pesticide-contaminated mix-load site soil capable of degrading the herbicides atrazine and alachlor." Soil Biology and Biochemistry, 39(12), 3056-3065. Chu, W., Choy, W. K., and So, T. Y. (2007). "The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline." Journal of Hazardous Materials, 141(1), 86-91. Daneshvar, N., Behnajady, M. A., Mohammadi, M. K. A., and Dorraji, M. S. S. (2008). "UV/H2O2 treatment of Rhodamine B in aqueous solution: Influence of operational parameters and kinetic modeling." Desalination, 230(1-3), 16-26. Daneshvar, N., Behnajady, M. A., and Zorriyeh Asghar, Y. (2007). "Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: influence of operational parameters and reaction mechanism." Journal of Hazardous Materials, 139(2), 275-279. Daneshvar, N., Salari, D., and Khataee, A. R. (2003). "Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters." Journal of Photochemistry and Photobiology A: Chemistry, 157(1), 111-116. Fukuhara, T., Iwasaki, S., Kawashima, M., Shinohara, O., and Abe, I. (2006). "Absorbability of estrone and 17beta-estradiol in water onto activated carbon." Water Research, 40(2), 241-248. Herrmann, J. M. (2005). "Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill)." Topics in Catalysis, 34(1-4), 49-65. Jusoh, A., Hartini, W. J., Ali, N., and Endut, A. (2011). "Study on the removal of pesticide in agricultural run off by granular activated carbon." Bioresource Technology, 102(9), 5312-5318. Katsumata, H., Kaneco, S., Suzuki, T., Ohta, K., and Yobiko, Y. (2006). "Photo-Fenton degradation of alachlor in the presence of citrate solution." Journal of Photochemistry and Photobiology A: Chemistry, 180(1-2), 38-45. Khataee, A. R., and Kasiri, M. B. (2010). "Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes." Journal of Molecular Catalysis A: Chemical, 328(1-2), 8-26. Kim, I., Yamashita, N., and Tanaka, H. (2009). "Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments." Chemosphere, 77(4), 518-525. Knapp, C. W., Graham, D. W., Berardesco, G., deNoyelles Jr, F., Cutak, B. J., and Larive, C. K. (2003). "Nutrient level, microbial activity, and alachlor transformation in aerobic aquatic systems." Water Research, 37(19), 4761-4769. Konstantinou, I. K., Sakkas, V. A., and Albanis, T. A. (2002). "Photocatalytic degradation of propachlor in aqueous TiO2 suspensions. Determination of the reaction pathway and identification of intermediate products by various analytical methods." Water Research, 36(11), 2733-2742. Kumar, S., Zafar, M., Prajapati, J. K., Kumar, S., and Kannepalli, S. (2011). "Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution." Journal of Hazardous Materials, 185(1), 287-294. Legrini, O., Oliveros, E., and Braun, A. M. (1993). "Photochemical processes for water treatment." Chemical Reviews, 93(2), 671-698. Lu, Q., and Sorial, G. A. (2007). "The effect of functional groups on oligomerization of phenolics on activated carbon." Journal of Hazardous Materials, 148(1-2), 436-445. Mollah, A. H., and Robinson, C. W. (1996). "Pentachlorophenol adsorption and desorption characteristics of granular activated carbon-I. Isotherms." Water Research, 30(12), 2901-2906. Nasuhoglu, D., Berk, D., and Yargeau, V. (2012). "Photocatalytic removal of 17α-ethinylestradiol (EE2) and levonorgestrel (LNG) from contraceptive pill manufacturing plant wastewater under UVC radiation." Chemical Engineering Journal, 185-186, 52-60. Para, S. (2001). "Coupling of Photocatalytic and Biological Processes as a Contribution to the Detoxification of Water." Catalysis and Tecnological Aspects, Ph.D. Thesis, Lausanne, France. Park, S.-J., Jang, Y.-S., Shim, J.-W., and Ryu, S.-K. (2003). "Studies on pore structures and surface functional groups of pitch-based activated carbon fibers." Journal of Colloid and Interface Science, 260(2), 259-264. Rodriguez-reinoso, F. (1998). "The role of carbon materials in heterogeneous catalysis." Carbon, 36(3), 159-175. Salman, J. M., and Hameed, B. H. (2010). "Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon." Desalination, 256(1-3), 129-135. Tang, D., Zheng, Z., Lin, K., Luan, J., and Zhang, J. (2007). "Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber." Journal of Hazardous Materials, 143(1-2), 49-56. Wayment, D. G., and Casadonte Jr, D. J. (2002). "Frequency effect on the sonochemical remediation of alachlor." Ultrasonics Sonochemistry, 9(5), 251-257. Wen, S., Zhao, J., Sheng, G., Fu, J., and Peng, P. (2003). "Photocatalytic reactions of pyrene at TiO2/water interfaces." Chemosphere, 50(1), 111-119. Wilson, A. G. E., Thake, D. C., Heydens, W. E., Brewster, D. W., and Hotz, K. J. (1996). "Mode of Action of Thyroid Tumor Formation in the Male Long–Evans Rat Administered High Doses of Alachlor." Fundamental and Applied Toxicology, 33(1), 16-23. Wong, C. C., and Chu, W. (2003). "The Hydrogen Peroxide-Assisted Photocatalytic Degradation of Alachlor in TiO2 Suspensions." Environmental Science & Technology, 37(10), 2310-2316. Yang, Z., Gao, B., and Yue, Q. (2010). "Coagulation performance and residual aluminum speciation of Al2(SO4)3 and polyaluminum chloride (PAC) in Yellow River water treatment." Chemical Engineering Journal, 165(1), 122-132. Zabar, R., Dolenc, D., Jerman, T., Franko, M., and Trebse, P. (2011). "Photolytic and photocatalytic degradation of 6-chloronicotinic acid." Chemosphere, 85(5), 861-868. Zhou, C., Gao, N., Deng, Y., Chu, W., Rong, W., and Zhou, S. (2012). "Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water." Journal of Hazardous Materials, 231-232, 43-48. (3)Electronic Resources IUPAC Gold Book http://goldbook.iupac.org/ WHO/UNEP.State of the science of endocrine disrupting chemicals (2012). (4)Others US. EPA. Drinking Water Regulations and Health Advisories;Lewis Publishers: Chelsea, MI, 1990
摘要: 本研究嘗試以高級處理技術包含混凝膠凝、活性碳吸附、高級氧化程序(UVC/H2O2與UVA/TiO2)處理具有高毒性內分泌干擾物質Alachlor(拉草)及其可行性評估。混凝膠凝選用常用之Al2(SO4)3˙18H2O(明礬)為混凝劑行快混慢混機制;活性碳係以市售顆粒活性碳(GAC)和粉狀活性碳(PAC)進行吸附平衡反應;在高級氧化處理部分過氧化氫以較短波長之UVC光源照射,二氧化鈦光觸媒則是以UVA光源產生氫氧自由基以降解污染物。而本研究中所使用之二氧化鈦光觸媒係以溶膠凝膠法製備而成,且藉由場發射掃描式電子顯微鏡(FE-SEM)分析可知自製TiO2相較於市售TiO2具有較小之顆粒粒徑,其分別為22 nm及88 nm;以高解析X光繞射儀(HRXRD)分析可了解其存在晶型包含Anatase與Rutile兩種型態;化學分析電子能譜儀(ESCA)則可鑑定光觸媒表面為O-Ti-O (TiO2) 之方式鍵結。 本研究結果顯示,Alachlor以混凝膠凝只有約10 %去除率,沒有明顯移除效果。GAC吸附材對於Alachlor之最高吸附率可達99 %,且其符合Langmuir吸附方程式,然而GAC所需要的吸附平衡時間長達七小時;PAC在不同酸鹼溶液皆可於二小時吸附約98 %之Alachlor,並符合Freundlich多層吸附方程式。此外;利用UVC光源照射可直接光解八成之Alachlor濃度,但未能符合放流水標準,若使用UVC/H2O2處理Alachlor則能提升至99 %之效率。另一方面,Alachlor雖在光源為UVA直接光解效率不佳,但藉由光觸媒的吸附能力和光催化反應最高約有93 %的去除率,且二種光催化降解反應皆符合擬一階動力模式。 綜合本研究實驗去除成效與經濟考量,其最佳處理Alachlor之方式為高級氧化處理中之過氧化氫光催化程序。
The aim of this study is to remove alachlor, highly toxic endocrine disruptors, by advanced treatment by coagulation, activated carbon adsorption, and advanced oxidation process (UVC/H2O2 and UVA/TiO2). Therefore, explore the feasibility of advanced treatment applied to alachlor. This research used aluminum potassium sulfate dodecahydrate as coagulant. The adsorbents were two commercial activated carbons, granular activated carbon (GAC) and powdered activated carbons (PACs). Moreover, in advanced oxidation processes employ ultraviolet-C (UVC) radiation-hydrogen peroxide, and ultraviolet-A (UVA) -titanium dioxide. They strongly rely on oxidative characteristics of free-radical species such as hydroxyl radicals (HO˙) that mediate degradation or decomposition of target compounds. The TiO2 was synthesized by sol-gel method and characterized by field emission scanning electron microscope (FE-SEM), high resolution X-ray diffractometer (HRXRD), and electron spectroscope for chemical analysis (ESCA). FE-SEM results showed that TiO2 had smaller particle size than commercial TiO2 about 22 nm amd 88 nm, respectively. The crystal structures of TiO2 contains anatase and rutile. Furthermore, the surface of photocatalyst is related to O-Ti-O bonds. Only 10 % of alachlor decay in coagulation–flocculation performance. The adsorption of alachlor on GAC shows that extended Langmuir model gives a best fit with experimental observations, where the higest percentage of adsorption capacity was 99 %. However it required seven hours. On the other hand, it could be achieved about 98% of adsorption rapidly of both acid and basic solution for PAC after two hours, and equilibrium data fitted well with Freundlich model. Besides, alachlor could be degraded by more than 80% by direct photolysis. But the concentration of alachlor did not conformed to the EPA emission standard. Nevertheless the effectiveness of H2O2 addition for alachlor removal during UVC treatment was increase to 99 %. Although direct photolysis of alachlor in UVA/TiO2 system were inefficient, removal efficiency would reach about 93 % of the adsorption capacity and photocatalytic reaction by the photocatalyst. Two kinds of photocatalytic degradation reactions followed pseudo-first-order kinetic model. Summary of this study, UVC/H2O2 advanced oxidation process was the best treatment of alachlor.
URI: http://hdl.handle.net/11455/5787
其他識別: U0005-2406201314302700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2406201314302700
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。