Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5791
標題: Pt/TiO2-AC與Pt/TiO2-MWCNT觸媒光催化降解EDTA廢水並產氫之研究
Photocatalytic degradation of EDTA in waste water on hydrogen production via Pt/TiO2-AC and Pt/ TiO2-MWCNT photocatalysts.
作者: 劉昭彰
liou, jau-jang
關鍵字: 活性碳
AC
多壁奈米碳管
產氫
二氧化鈦
pH值
EDTA
MWCNT
Hydrogen production
TiO2
pH value
EDTA
出版社: 環境工程學系所
引用: 參考文獻 Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., (2001), Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, 293, 269. Balat, H. and Kirtay, K., (2010), Hydrogen from biomass – Present scenario and future prospects, International Journal of Hydrogen Energy, 35, 7416-7426. Chen, Q.X., Zhang, W., Wang,H.R. and Zhou, H.M., (1996), Kinetics of inactivation of green crab(Scylla Serrata) alkaline phosphatase during removal of zinc ions by ethylenediaminetetraacetic acid disodium, International Journal of Biological Macromolecules, 19, 257-261. Chowdhury, P., Malekshoar, G., Ray, M.B., Zhu, J. and Ray, A.K., (2013), Sacrificial Hydrogen Generation from Formaldehyde with Pt/TiO2 Photocatalyst in Solar Radiation, Industrial & Engineering Chemistry Research, 52, 5023-5029. Iijima, S. and Ichihashi, T., (1993). Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603-605. Iijima, S., (1991), Helical Microtubules of Graphitic Carbon, Nature, 354, 56-58. Jin, Y. and Yuan, F.G., (2003). Simulation of elastic properties of single-walled carbon nanotubes, Compos Sci Technol, 63, 1507-1515. Kari, G.F. and Giger, W., (1995), Modeling the photochemical degradation of ethylenediaminetetraacetate in the River Glatt, Environmental Science and Technology, 29, 2814-2827. Li, H., Zhang, X., Cui, X. and Lin, Y., (2012), TiO2 Nanotubes/MWCNTs Nanocomposite Photocatalysts: Synthesis, Characterization and Photocatalytic Hydrogen Evolution Under UV-Vis Light Illumination, Journal of Nanoscience and Nanotechnology, 12, 1806-1811. Li, Y., Fan, Y. and Chen, Y., (2002), A novel method for preparation of nanocrystalline rutile TiO2 powders by liquid hydrolysis of TiCl4, Three Gorges University. Stumm, W., (1992), Chemistry of the solid-water interface, Wiley- Interscience, New York. Sykora, V., Pitter, P., Bittnerova, I. and Lederer, T., (2001), Biodegradability of ethylenediamine-based complexing agents, Water Res, 35, 2010-2016. Tseng, I.H., Chang, W.C. and Wu, J.C.S., (2002), Photoreduction of CO2 Using Sol-Gel Derived Titania and Titania-Supported Copper Catalysts, National Taiwan University, Environmental, 37, 37–48. Vamathevan, V., Amal, R., Beydoun, D., Low, G. and McEvoy, S., (2002), Journal of Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles, Journal of Photochemistry and Photobiology, 148, 233-245. Yoneyama, H., (2000), Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations, Catalysis Today, 58, 133-140. Yoong, L.S., Chong, F.K. and Dutta, B.K., (2009), Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light, Energy, 34, 1652-1661. Young, K.K. and Hyunwoong, P., (2011), Light-harvesting multi-walled carbon nanotubes and CdS hybrids:Application to photocatalytic hydrogen production from water, Energy & Environmental Science, 685-694. 中國國家檢驗標準(CNS),(1996) ,化學試藥(四乙酸乙二胺) ,總:1718,類號:K7218 王士庭,(2009) ,可見光應答氮氧化鈦光觸媒之材料特性與光催化活性探討,大同大學,碩士論文 台灣永續能源基金會,(2008),永續發展與能源 石立節,(2005),奈米碳管酸純化前後表面特性之變化,國立中央大學,碩士論文 朱昱璋,(2006),二氧化鈦奈米管擔載金、鉑觸媒進行紫 外光甲醇重組產氫反應,中央大學,碩士論文 吳碧蓮,(2007),奈米碳管、活性碳與沸石吸附二氧化碳溫室氣體之研究,國立中興大學,碩士論文 呂宗昕,(2003),圖解奈米科技與光觸媒,商周出版 李元堯,(2003),21世紀的尖端材料-奈米碳管,化工技術,第十一卷第二期 林君怡,(2008),以微波法製備奈米二氧化鈦之研究,國立台北科技大學,碩士論文 林佩蓉,(2007),以溶膠凝膠法製備二氧化鈦-活性碳複合粉末及光催化效果之研究,國立成功大學,碩士論文 金珮瑩,(2009),利用零價鐵程序處理含銅、鎳以及乙烯二銨四乙酸之研究,國立台北科技大學,碩士論文 洪珩婕,(2010),以氮改質的鉑二氧化鈦於可見光下分解水製氫之研究,靜宜大學,碩士論文 張志誠,(2004),EDTA降解菌應用於含金屬-EDTA廢水處理之研究,國立雲林科技大學,碩士論文 許世杰,(2009),奈米碳管氣相吸附異丙醇之研究,國立中興大學,博士論文 陳育珩、陳家榮,(2011),氫能源之技術預測與燃料電池產業發展之策略規劃,礦冶,第五十四卷第四期 彭郁華,(2008),二氧化鈦奈米管氫能源製備系統之設計,國立台灣大學,碩士論文 曾建順,(2008),利用化學水浴法製備Ag2S/In2S3可見光光觸媒薄膜與其性質分析,國立台北科技大學,碩士論文 黃定加,(2003),新編”物理化學實驗” ,高立圖書出版 黃建良和黃淑娟,(2003),奈米碳纖與奈米碳管合成技術簡介,化工 ,第五十卷第二期 黃柄橓,(2012),Pt/TiO2-XNX/SrTiO3光觸媒以提升太陽光解水產氫速率,國立中興大學,博士論文 黃楷茗,(2007),微波反應活性碳循環床處理半導體業排放異丙醇與丙酮廢氣之研究,國立台北科技大學,碩士論文 黃義修,(2004),探討以活性碳吸附酸來提昇 Clostridium butyricum 產氫之研究,國立中央大學,碩士論文 楊鏡堂、萬曉明、許妙行、陳建志、游宗翰、黃如薏、蔡佳玲、黃郁棻、林佑俊,(2008),我國前瞻能源技術探討,中技社 經濟部能源局,(2013),能源統計月報,http://web3.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142 僑光科技大學,(2006),奈米光觸媒作用原理與其應用範圍 廖世凱,(2012),以乙二胺四乙酸廢水作為光催化產氫犠牲劑之研究,國立中興大學,碩士論文 鄭光煒,(2007),前瞻能源技術-太陽能製氫技術,長庚大學第五十八期校訊,http://memo.cgu.edu.tw/Secretariat/news/58/research/research_2.htm 鄭玫玲,(2007),金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究,國立中央大學,碩士論文 閻正剛,(2008),地球未來最有潛力的新能源:氫能源,http://www.ch.ntu.edu. tw/~rsliu/pdf97/material/1.pdf 環保署,(2013),聯合國氣候變化綱要公約及京都議定書,http://www.epa.gov.tw/ch/SitePath.aspx?busin=7603&path=10959&list=10959
摘要: 摘要 本研究嘗試以活性碳與多壁奈米碳管做為二氧化鈦觸媒之複合材料,並以光沉積法披覆金屬鉑,探討不同之碳材種類和碳材複合比對於光催化產氫之影響。同時,亦探討不同之觸媒複合程序對於觸媒特性之影響。此外,本研究亦嘗試以工業上常使用之螯合劑-EDTA取代甲醇做為光催化反應之犧牲劑,分別探討兩種不同犧牲劑對於複合觸媒光解水產氫之成效。 當活性碳之複合比為1.0 wt.%時,對觸媒最具協同效應。相較於Pt/TiO2觸媒,複合活性碳的Pt/TiO2-AC(1)觸媒活性之提升歸因於活性碳所具備之強吸附能力增加了觸媒與犧牲劑和水分子之反應機率。 然而,由於多壁奈米碳管經酸處理後,其結構上會帶有COO-官能基,在過量之多壁奈米碳管複合比之下,此特性將阻礙Pt/TiO2-MWCNT複合觸媒與犧牲劑和水分子之反應機率。當多壁奈米碳管之複合比為0.1 wt.%時,對觸媒最具協同效應。 研究結果顯示,以方法(二):先複合TiO2和活性碳後再披覆金屬Pt的觸媒製備程序相較於方法(一) :先披覆Pt於TiO2上再複合碳材的方式,以方法(二)合成之活性碳複合觸媒在模擬實場廢水(0.01 M EDTA)的環境下具有較佳的催化活性。 由研究結果顯示以活性碳做為複合觸媒之碳材時,可有效地減緩反應環境之酸鹼值對觸媒之催化活性的影響程度。
Abstract In this research, activated carbon (AC) and multi-walled carbon nanotube (MWCNT) were chosen as the materials of composite catalysts, and the Pt metal was deposited on the TiO2 surface by photo-deposition method. The effects of carbon material, composite ratio, composite sequence and sacrificial agent (methanol and EDTA) on photocatalytic hydrogen production were discussed. When coupling 1.0 wt. % activated carbon with Pt/TiO2 by method I (coating Pt metal on the surface of TiO2 first, then coupling activated carbon with Pt/TiO2), the best hydrogen yield was achieved. It was attributed to the enhancement of reaction probability by activated carbon which one had strong adsorbability for H2O and methanol molecules after acid treatment. Unlike the activity testing results of Pt/TiO2-AC, the best hydrogen yield was achieved when coupling 0.1 wt. % multi-walled carbon nanotube with Pt/TiO2 by method I. Because multi-walled carbon nanotube had carboxyl functional groups after acid treatment, the excess composite ratio of multi-walled carbon nanotube will hinder photocatalytic hydrogen production. The results indicated that when using 0.01 M EDTA as sacrificial agent, the composite catalyst which was synthesized by method II (coupling activated carbon with TiO2 first, then coating Pt metal on the whole surface of TiO2-AC) was much better for hydrogen evolution. According to the results of activity testing, it was found that activated carbon could retard the influence of pH value on catalytic activity of TiO2.
URI: http://hdl.handle.net/11455/5791
其他識別: U0005-1608201314235900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1608201314235900
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.