請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5801
標題: 二氧化鈦光催化降解雌二醇(E2)之研究
Study on the degradation of 17β-estradiol(E2) by TiO2 photocatalysts
作者: 陳瀅屯
Chen, Ring-Tun
關鍵字: 二氧化鈦
TiO2
雌二醇
光催化
17β-estradiol
Photocatalytic
出版社: 環境工程學系所
引用: 王瀞儀,2012,「以 N-TiO2 固定態光觸媒利用太陽光礦化雙酚A之研究」,國立中興大學環境工程研究所,碩士論文。 宋晨怡、胡霞林、伊大強,2011,「四環素在光催化劑TiO2上的吸附研究」,同濟大學環境學與工程學院。 林惠曼,2011,「以鑭系金屬Nd、Sm、La改質二氧化鈦光催化降解染料 Acid Red 27之研究」,國立中興大學環境工程研究所,碩士論文。 洪雲傑,2006,「以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究」,國立中興大學環境工程研究所,碩士論文。 郭瀚文,2004,「以氣相及液相層析質譜分析具賀爾蒙效應物質之方法開發」,國立中央大學化學研究所,碩士論文。 楊子寬,2006,「利用溶膠凝膠法製備TiO2-Al2O3粉末及對TiO2光催化效果影響之研究」,國立成功大學資源工程研究所,碩士論文。 蘇于菁,2005,「以青鳉魚支出帶肝臟培養細胞探討廢水對其卵黃先質(VTG)表現之影響」,嘉南藥理科技大學環境工程與科學系,碩士論文。 (2)其他 行政院環境保護署全國環淨水質監測資訊網。 楊喜男、王漢泉、劉鎮山、王世冠、彭瑞華、郭季華、楊禮源、李俊宏、徐美榕,2003,「台灣河川水體、底泥及生物監測分析研究」,環保署委託計畫。 Alturki, A. A., Tadkaew, N., McDonald, J. A., Khan, S. J., Price, W. E., and Nghiem, L. D. (2010). "Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications." Journal of Membrane Science, 365(1–2), 206-215. Avasarala, B. K., Tirukkovalluri, S. R., and Bojja, S. (2011). "Photocatalytic degradation of monocrotophos pesticide--an endocrine disruptor by magnesium doped titania." Journal of Hazard Mater, 186(2-3), 1234-40. Avasarala, B. K., Tirukkovalluri, S. R., and Bojja, S. (2011). "Photocatalytic degradation of monocrotophos pesticide-An endocrine disruptor by magnesium doped titania." Journal of Hazardous Materials, 186(2-3), 1234-1240. Baronti, C., Curini, R., D''Ascenzo, G., Di Corcia, A., Gentili, A., and Samperi, R. (2000). "Monitoring Natural and Synthetic Estrogens at Activated Sludge Sewage Treatment Plants and in a Receiving River Water." Environmental Science & Technology, 34(24), 5059-5066. Belfroid, A. C., Van der Horst, A., Vethaak, A. D., Schafer, A. J., Rijs, G. B. J., Wegener, J., and Cofino, W. P. (1999). "Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands." Science of The Total Environment, 225(1–2), 101-108. Blanquez, P., and Guieysse, B. (2008). "Continuous biodegradation of 17β-estradiol and 17α-ethynylestradiol by Trametes versicolor." Journal of Hazardous Materials, 150(2), 459-462. Cartinella, J. L., Cath, T. Y., Flynn, M. T., Miller, G. C., Hunter, K. W., and Childress, A. E. (2006). "Removal of Natural Steroid Hormones from Wastewater Using Membrane Contactor Processes." Environmental Science & Technology, 40(23), 7381-7386. Chowdhury, R. R., Charpentier, P. A., and Ray, M. B. (2011). "Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: Kinetics and influencing water parameters." Journal of Photochemistry and Photobiology A: Chemistry, 219(1), 67-75. Coleman, H. M., Abdullah, M. I., Eggins, B. R., and Palmer, F. L. (2005). "Photocatalytic degradation of 17β-oestradiol, oestriol and 17α-ethynyloestradiol in water monitored using fluorescence spectroscopy." Applied Catalysis B: Environmental, 55(1), 23-30. Coleman, H. M., Eggins, B. R., Byrne, J. A., Palmer, F. L., and King, E. (2000). "Photocatalytic degradation of 17-β-oestradiol on immobilised TiO2." Applied Catalysis B: Environmental, 24(1), L1-L5. Coleman, H. M., Routledge, E. J., Sumpter, J. P., Eggins, B. R., and Byrne, J. A. (2004). "Rapid loss of estrogenicity of steroid estrogens by UVA photolysis and photocatalysis over an immobilised titanium dioxide catalyst." Water Research, 38(14–15), 3233-3240. Daskalaki, V. M., Frontistis, Z., Mantzavinos, D., and Katsaounis, A. (2011). "Solar light-induced degradation of bisphenol-A with TiO2 immobilized on Ti." Catalysis Today, 161(1), 110-114. Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., and Waldock, M. (1998). "Identification of Estrogenic Chemicals in STW Effluent. 1. Chemical Fractionation and in Vitro Biological Screening." Environmental Science & Technology, 32(11), 1549-1558. Diebold, U. (2003). "The surface science of titanium dioxide." Surface Science Reports, 48(5–8), 53-229. Edward, P. C. L., Zack De, M., and Shuyi, W. (2010). "Characterization of molecularly imprinted and nonimprinted polymer submicron particles specifically tailored for removal of trace 17β-estradiol in water treatment." Journal of Applied Polymer Science, 116(3), 1499-1508. Feng, W., and Nansheng., D. (2000). "Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A minireview." Chemosphere, 41(8), 1137-1147. Finklea, H. O. (1988). " Semiconductor electrode. " Elsevier Press, New York. Fonseca, A. P., Lima, D. L. D., and Esteves, V. I. (2010). "Degradation by Solar Radiation of Estrogenic Hormones Monitored by UV–Visible Spectroscopy and Capillary Electrophoresis." Water, Air, & Soil Pollution, 215(1-4), 441-447. Frontistis, Z., Xekoukoulotakis, N. P., Hapeshi, E., Venieri, D., Fatta-Kassinos, D., and Mantzavinos, D. (2011). "Fast degradation of estrogen hormones in environmental matrices by photo-Fenton oxidation under simulated solar radiation." Chemical Engineering Journal, 178(0), 175-182. Fu, P., Luan, Y., and Dai, X. (2004). "Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity." Journal of Molecular Catalysis A: Chemical, 221(1–2), 81-88. Gnaser, H., Huber, B., and Ziegler, C. (2004). "Nanocrystalline TiO2 for Photocatalysis." Encyclopedia of Nanoscience and Nanotechnology, 6(1), 505-535. Gruber, C. J., Tschugguel, W., Schneeberger, C., and Huber, J. C. (2002). "Production and Actions of Estrogens." New England Journal of Medicine, 346(5), 340-352. Hu, J., Cheng, S., Aizawa, T., Terao, Y., and Kunikane, S. (2003). "Products of Aqueous Chlorination of 17β-Estradiol and Their Estrogenic Activities." Environmental Science & Technology, 37(24), 5665-5670. Hurwitz, A. R., and Liu, S. T. (1977). "Determination of aqueous solubility and pKa values of estrogens." Journal of Pharmaceutical Sciences, 66(5), 624-627. Jurgens, M. D., Holthaus, K. I. E., Johnson, A. C., Smith, J. J. L., Hetheridge, M., and Williams, R. J. (2002). "The potential for estradiol and ethinylestradiol degradation in english rivers." Environmental Toxicology and Chemistry, 21(3), 480-488. Jeannot, R., Sabik, H., Sauvard, E., Dagnac, T., and Dohrendorf, K. (2002). "Determination of endocrine-disrupting compounds in environmental samples using gas and liquid chromatography with mass spectrometry." Journal of Chromatography A, 974(1–2), 143-159. Jiang, L., Huang, C., Chen, J., and Chen, X. (2009). "Oxidative Transformation of 17β-estradiol by MnO2 in Aqueous Solution." Archives of Environmental Contamination and Toxicology, 57(2), 221-229. Johnson, A. C., Belfroid, A., and Di Corcia, A. (2000). "Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent." Science of The Total Environment, 256(2–3), 163-173. Kaneco, S., Rahman, M. A., Suzuki, T., Katsumata, H., and Ohta, K. (2004). "Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide." Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 419-424. Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., and Snyder, S. A. (2007). "Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters." Water Research, 41(5), 1013-1021. Kuch, H. M., and Ballschmiter, K. (2001). "Determination of Endocrine-Disrupting Phenolic Compounds and Estrogens in Surface and Drinking Water by HRGC−(NCI)−MS in the Picogram per Liter Range." Environmental Science & Technology, 35(15), 3201-3206. Kuo, Y.L., Su, T.L., Kung, F.C., and Wu, T.J. (2011). "A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photocatalysts." Journal of Hazardous Materials, 190(1-3), 938-944. Lai, K. M., Johnson, K. L., Scrimshaw, M. D., and Lester, J. N. (2000). "Binding of Waterborne Steroid Estrogens to Solid Phases in River and Estuarine Systems." Environmental Science & Technology, 34(18), 3890-3894. Leech, D. M., Snyder, M. T., and Wetzel, R. G. (2009). "Natural organic matter and sunlight accelerate the degradation of 17s-estradiol in water." Science of The Total Environment, 407(6), 2087-2092. Linsebigler, A. L., Lu, G., and Yates, J. T. (1995). "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results." Chemical Reviews, 95(3), 735-758. Liu, F.M., and Wang, T.M. (2002). "Surface and optical properties of nanocrystalline anatase titania films grown by radio frequency reactive magnetron sputtering." Applied Surface Science, 195(1–4), 284-290. Liu, R., Zhou, J. L., and Wilding, A. (2004). "Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction–gas chromatography–mass spectrometry." Journal of Chromatography A, 1022(1–2), 179-189. Mai, J., Sun, W., Xiong, L., Liu, Y., and Ni, J. (2008). "Titanium dioxide mediated photocatalytic degradation of 17β-estradiol in aqueous solution." Chemosphere, 73(4), 600-606. Malato, S., Fernandez-Ibanez, P., Maldonado, M. I., Blanco, J., and Gernjak, W. (2009). "Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends." Catalysis Today, 147(1), 1-59. Moulder, J. F., Stickle, W. f., Sobol, P. E., and Bomben, K. D. (1992). Handbook of X-ray Photoelectron Spectroscopy Perkin-Elmer Corporation Physical Electronics Division. Nelieu, S., Kerhoas, L., Sarakha, M., and Einhorn, J. (2004). "Nitrite and nitrate induced photodegradation of monolinuron in aqueous solution." Environmental Chemistry Letters, 2(2), 83-87. Okamoto, K.I., Yamamoto, Y., Tanaka, H., Tanaka, M., and Itaya, A. (1985). "Heterogeneous photocatalytic decomposition of phenol over TiO2 powder." Bulletin of The Chemical Society of Japan, 58(7), 2015-2022. Pathirana, H. M. K. K., and Maithreepala, R. A. (1997). "Photodegradation of 3,4-dichloropropionamide in aqueous TiO2 suspensions." Journal of Photochemistry and Photobiology A: Chemistry, 102(2–3), 273-277. Petrovic, M., Barcelo, D., and Perez, S. (2007). Analysis, Fate and Removal of Pharmaceuticals in the Water Cycle: Elsevier Science. Stumm, W., (1992), "Chemstry of the solid-water interface" John Wiley & Sons, New York. Suri, R. P. S., Singh, T. S., and Abburi, S. (2010). "Influence of Alkalinity and Salinity on the Sonochemical Degradation of Estrogen Hormones in Aqueous Solution." Environmental Science & Technology, 44(4), 1373-1379. Ternes, T. A., Stumpf, M., Mueller, J., Haberer, K., Wilken, R. D., and Servos, M. (1999). "Behavior and occurrence of estrogens in municipal sewage treatment plants — I. Investigations in Germany, Canada and Brazil." Science of The Total Environment, 225(1–2), 81-90. Wang, C.C., and Ying, J. Y. (1999). "Sol−Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals." Chemistry of Materials, 11(11), 3113-3120. Wong, C. C., and Chu, W. (2003). "The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources." Chemosphere, 50(8), 981-987. Ying, G.G., and Kookana, R. S. (2003). "Degradation of Five Selected Endocrine-Disrupting Chemicals in Seawater and Marine Sediment." Environmental Science & Technology, 37(7), 1256-1260. Ying, G.G., Kookana, R. S., and Ru, Y.-J. (2002). "Occurrence and fate of hormone steroids in the environment." Environment International, 28(6), 545-551. Zhang, Y., and Zhou, J. L. (2005). "Removal of estrone and 17β-estradiol from water by adsorption." Water Research, 39(16), 3991-4003. Zhang, Y., and Zhou, J. L. (2008). "Occurrence and removal of endocrine disrupting chemicals in wastewater." Chemosphere, 73(5), 848-853. Zhang, Y., Zhou, J. L., and Ning, B. (2007). "Photodegradation of estrone and 17β-estradiol in water." Water Research, 41(1), 19-26. Zhao, Y., Jiangyong, H., and Chen, H. (2010). "Elimination of estrogen and its estrogenicity by heterogeneous photo-Fenton catalyst β-FeOOH/resin." Journal of Photochemistry and Photobiology A: Chemistry, 212(2–3), 94-100. Zhou, J. L., Liu, R., Wilding, A., and Hibberd, A. (2006). "Sorption of Selected Endocrine Disrupting Chemicals to Different Aquatic Colloids." Environmental Science & Technology, 41(1), 206-213.
摘要: 許多國家於污水處理廠排水處及地表水發現內分泌干擾物質(Endocrine Disrupting Chemicals, EDCs)的存在,其中天然雌性激素雌二醇(17β-estradiol, E2)被確認為最具內分泌干擾活性之物質,E2曝露於環境中的濃度約為ng/L,但卻足以影響生態環境與人類健康,造成性別比例失衡、雌性化及生殖異常等問題,傳統污水處理技術無法有效將E2完全降解,必須以更完善處理技術提高E2之去除。近年來高級氧化處理技術備受矚目,因其能有效的去除有機污染物,其中以二氧化鈦光催化處理具有操作簡單、反應時間短及成本低之優勢。 本研究利用二氧化鈦光催化提升E2去除率,並進行部分水質參數影響之研究。研究將分別藉由FE-SEM、HRXRD、ESCA及UV/VIS進行光觸媒表面特性分析,以了解光觸媒型態與晶相組成等,本實驗分為兩部分,首先針對不同TiO2添加量(0.1、0.5、1、2 g/L)、pH值(5、7、9)及雌二醇初始濃度(1、5、10 μM)進行光催化處理,以尋求較佳的處理條件,再針對NO3-(0、1、10、20 mg/L)、 溶氧(1、9 mg/L)及Fe3+(0、0.5、1、2 mg/L)之參數條件進行參數影響的探討。 經由表面特性分析結果可知,製備之光觸媒以球形顆粒存在,其粒徑大小為30 nm,晶型為銳鈦礦與金紅石之複合晶型,起始吸收波長為424 nm,推論能隙為2.92 eV。研究結果顯示E2的降解率隨TiO2添加量增加而上升,但於1 g/L下有較佳的礦化效果,因此以1 g/L 為最佳的TiO2添加量,pH值的提高有助於E2的降解,但酸性條件下有較好的礦化情形,為求雌二醇的礦化效率,以pH 5為最佳的反應溶液pH值,E2的降解速率雖隨E2初始濃度的上升而降低,但高濃度下每單位時間E2處理量較多。參數影響方面,NO3-、 溶氧及Fe3+的濃度增加均能提高E2的光催化與礦化效果,表示水中此類參數有助於E2之去除。
17β-estradiol (E2) is one of the Endocrine Disrupting Chemicals (EDCs) and affect ecological environment and human health, including imbalance of sex ratios, feminization and reproductive abnormalities in trace concentration. Many countries found that both sewage treatment plant and surface water had EDCs. The conventional sewage treatment technology can not remove E2 completely. To improve the treatment program for the E2 removal is necessary. In recent years, TiO2 photocatalysis was more popular. It has advantages including simple operation, short reaction time and low cost. In this study, the TiO2 photocatalysis was conducted to increase E2 removal rate, and the effect of water parameters were investigated. The TiO2 photocatalytic pattern and crystal phase composition were analyzed by FE-SEM、HRXRD、ESCA and UV/VIS. The experiments include two parts. In the first part, different dose of TiO2 (0.1, 0.5, 1, 2 g/L), pH (5, 7, 9) and adjusted initial concentration of E2 (1, 5, 10 μM) were studied to find better condition for TiO2 photocatalysis.In the second part, different concentration of water quality parameters involving NO3- (0, 1, 10, 20 mg/L), dissolved oxygen (1, 9 mg/L) and Fe3+ (0, 0.5, 1, 2 mg/L) were studied to observe the effect of E2 removal rate. The results revealed that the shape of photocatalyst is spherical particles and the size is about 30 nm. The crystal structures of TiO2 includes anatase and rutile form. The band gap of TiO2 is 2.92 eV and the absorption wavelength is about 424 nm. The E2 degradstion efficiency increased as the dose of TiO2 increased. However, the better mineralization is in the 1 g/L TiO2. In the same case, higher pH can improve E2 degradation, but the better mineralizatiion of E2 is in the acidic conditions. The degradation rate of E2 was decreased when the initial concentration of E2 increased. The water parameters showed that increasing the concentration of those factors (NO3-, dissolved oxygen and Fe3 +) can improve the photocatalytic and mineralization efficiency.
URI: http://hdl.handle.net/11455/5801
其他識別: U0005-2406201313253300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2406201313253300
顯示於類別:環境工程學系所

文件中的檔案:
檔案 大小格式 
nchu-102-7100063016-1.pdf2.45 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。