請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5806
標題: 以丁酸為基質之微生物電解電池系統效能與微生物族群結構分析
System efficiency and microbial community analysis of microbial electrolysis cells using butyrate as the substrate
作者: 呂郁雯
Lu, Yu-Wen
關鍵字: 微生物電解電池
Microbial electrolysis cells
胞外產電菌
丁酸
甲烷抑制
Exoelectrogens
Butyrate
Methane inhibition
出版社: 環境工程學系所
引用: 中文參考文獻 圖書 方良吉、王漢英、曲新生、朱時梁、朱義仁、江秋桂、李宏台、李清庭、李勝隆、辛華煜、何無忌、何建輝、林法正、林秋裕、林炳明、林振源、林國安、吳英秦、吳建勳、吳煌、邱錦松、胡耀祖、徐恆文、桂人傑、曹芳海、黃正忠、黃明熙、黃秉鈞、陳清山、陳錫銓、陳輝俊、張翼、楊秉純、楊建裕、詹益亮、蔡松雨、鄭名山、賴炎生、劉志放、盧俊鼎、顏文治、顏志偉、蕭弘清、藍崇文與羅仕明 (2010) 2010年能源產業技術白皮書。經濟部能源局。 期刊論文 林秋裕與張逢源 (2008) 生物氫能面面觀。物理雙月刊 3:389-394。 張逢源與林秋裕 (2008) 淺談台灣生質能發展。能源報導 12:5-7。 張維欽、莊順興、羅時斌與陳建衡 (2008) 生物處理系統之溶解性微生物產物探討。工業污染防治 105:39-56。 張嘉修 (2009) 生質氫能。科學發展 433:32-35。 張福傳、張美琴與蘇郁雅 (2011) 台灣有機廢棄物厭氧醱酵產製生質能之期待與展望。化工技術 19:124-137。 吳珮瑛、林宗昱與劉哲良 (2010) 由 APEC 區域組織邁入國際社會參與碳排放交易之結果——對台灣的啟示。台灣國際研究季刊 6:143-184。 黃啟裕 (2008) 纖維素產氫技術在生質能源之發展。農業生技產業季刊 13:54-60。 張佩雯 (2011) 探討微生物電解電池於不同操作條件下之產氫效能與菌群結構。碩士論文。國立中興大學,台中。 英文參考文獻 Books Logan, B.E. (1999) Environmental transport processes. Wiley. Logan, B.E. (2008) Microbial fuel cells. John Wiley & Sons. Hallenbeck, P.C. (2012) Microbial Production of Fatty-Acid-Based Biofuels. Microbial Technologies in Advanced Biofuels Production, in: Hallenbeck, P.C. (Ed.). Springer US, pp. 213-230. Liu, H. and Hu, H., (2012) Microbial Electrolysis: Novel Biotechnology for Hydrogen Production from Biomass. Microbial Technologies in Advanced Biofuels Production, in: Hallenbeck, P.C. (Ed.). Springer US, pp. 93-105. Madigan, M.T. and Martinko, J.M. (2005) Brock Biology Of Microorganisms, 11th ed. Rittmann, B.E. and McCarty, P.L. (2001) Environmental Biotechnology: Principles and Applications. McGraw-Hill. Stams, A.J.M., Worm, P., Sousa, D.Z., Alves, M.M. and Plugge, C.M., (2012) Syntrophic Degradation of Fatty Acids by Methanogenic Communities. Microbial Technologies in Advanced Biofuels Production, in: Hallenbeck, P.C. (Ed). Springer US, pp. 213-230. Worm, P., Muller, N., Plugge, C., Stams, A. and Schink, B. (2011) Syntrophy in Methanogenic Degradation. (Endo)symbiotic Methanogenic Archaea, in: Hackstein, J.H.P. (Ed.). Springer Berlin / Heidelberg, pp. 143-173. Journal articles Abbasi, T. and Abbasi, S.A. (2011) ‘Renewable’ hydrogen: Prospects and challenges. Renewable and Sustainable Energy Reviews 15: 3034-3040. Ahn, Y. and Logan, B.E. (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology 101: 469-475. Badireddy, A.R., Korpol, B.R., Chellam, S., Gassman, P.L., Engelhard, M.H., Lea, A.S. and Rosso, K.M. (2008) Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression Using Sub-Inhibitory Concentrations of Bismuth Thiols. Biomacromolecules 9: 3079-3089. Barker, D.J. and Stuckey, D.C. (1999) A review of soluble microbial products (SMP) in wastewater treatment systems. Water Research 33: 3063-3082. Benemann, J.R., (1998) Processes analysis and economics of biophotolysis of water, IEA Technical Report from the IEA Agreement on the Production and Utilization of Hydrogen. Berg, G., Roskot, N. and Smalla, K. (1999) Genotypic and Phenotypic Relationships between Clinical and Environmental Isolates of Stenotrophomonas maltophilia. Journal of Clinical Microbiology 37: 3594-3600. Bond, D.R., Holmes, D.E., Tender, L.M. and Lovley, D.R. (2002) Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments. Science 295: 483-485. Bond, D.R. and Lovley, D.R. (2003) Electricity Production by Geobacter sulfurreducens Attached to Electrodes. Applied and Environmental Microbiology 69: 1548-1555. Bugat, A., (2006) Future Means of Hydrogen Production, World Hydrogen Technologies Convention(WHEC), Lyon, France. Caccavo, F., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F. and McInerney, M.J. (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Applied and Environmental Microbiology 60: 3752-3759. Call, D. and Logan, B.E. (2008) Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane. Environmental Science & Technology 42: 3401-3406. Call, D.F. and Logan, B.E. (2011) A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosensors and Bioelectronics 26: 4526-4531. Call, D.F., Merrill, M.D. and Logan, B.E. (2009a) High Surface Area Stainless Steel Brushes as Cathodes in Microbial Electrolysis Cells. Environmental Science & Technology 43: 2179-2183. Call, D.F., Wagner, R.C. and Logan, B.E. (2009b) Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell. Applied and Environmental Microbiology 75: 7579-7587. Chae, K.J., Choi, M.J., Kim, K.Y., Ajayi, F.F., Chang, I.S. and Kim, I.S. (2010a) Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy 35: 13379-13386. Chae, K.J., Choi, M.J., Kim, K.Y., Ajayi, F.F., Park, W., Kim, C.W. and Kim, I.S. (2010b) Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells. Bioresource Technology 101: 5350-5357. Chae, K.J., Choi, M.J., Lee, J., Ajayi, F.F. and Kim, I.S. (2008) Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. International Journal of Hydrogen Energy 33: 5184-5192. Chae, K.J., Choi, M.J., Lee, J.W., Kim, K.Y. and Kim, I.S. (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technology 100: 3518-3525. Cheng, S. and Logan, B.E. (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proceedings of the National Academy of Sciences of the United States of America 104: 18871-18873. Cheng, S. and Logan, B.E. (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresource Technology 102: 3571-3574. Chidthaisong, A. and Conrad, R. (2000) Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil. Soil Biology and Biochemistry 32: 977-988. Childers, S.E., Ciufo, S. and Lovley, D.R. (2002) Geobacter metallireducens accesses insoluble Fe (III) oxide by chemotaxis. Nature 416: 767-769. Chiu, P.C. and Lee, M. (2001) 2-Bromoethanesulfonate Affects Bacteria in a Trichloroethene-Dechlorinating Culture. Applied and Environmental Microbiology 67: 2371-2374. Clauwaert, P. and Verstraete, W. (2009) Methanogenesis in membraneless microbial electrolysis cells. Applied Microbiology & Biotechnology 82: 829-836. Coates, J.D., Bhupathiraju, V.K., Achenbach, L.A., Mclnerney, M.J. and Lovley, D.R. (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. International Journal of Systematic and Evolutionary Microbiology 51: 581-588. Croese, E., Pereira, M., Euverink, G.-J., Stams, A. and Geelhoed, J. (2011) Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Applied Microbiology & Biotechnology 92: 1083-1093. Cusick, R.D., Kiely, P.D. and Logan, B.E. (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. International Journal of Hydrogen Energy 35: 8855-8861. Das, D. and Veziroglu, T.N. (2008) Advances in biological hydrogen production processes. International Journal of Hydrogen Energy 33: 6046-6057. Das, D. and Veziroǧlu, T.N. (2001) Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26: 13-28. de Oliveira-Garcia, D., Dall''Agnol, M., Rosales, M., Azzuz, A.C.G.S., Martinez, M.B. and Giron, J.A. (2002) Characterization of flagella produced by clinical strains of Stenotrophomonas maltophilia. Emerging infectious diseases 8: 918. Demirel, B. and Scherer, P. (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Reviews in Environmental Science and Biotechnology 7: 173-190. Ditzig, J., Liu, H. and Logan, B.E. (2007) Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). International Journal of Hydrogen Energy 32: 2296-2304. Endo, G., Noike, T. and Matsumoto, J. (1982) Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc. Soc. Civ. Eng 325: 61-68(In Japanese). Fishman, J., Ramanathan, V., Crutzen, P.J. and Liu, S.C. (1979) Tropospheric ozone and climate. Nature 282: 818-820. Freguia, S., Teh, E.H., Boon, N., Leung, K.M., Keller, J. and Rabaey, K. (2010) Microbial fuel cells operating on mixed fatty acids. Bioresource Technology 101: 1233-1238. Galagan, J.E., Nusbaum, C., Roy, A., Endrizzi, M.G., Macdonald, P., FitzHugh, W., Calvo, S., Engels, R., Smirnov, S., Atnoor, D., Brown, A., Allen, N., Naylor, J., Stange-Thomann, N., DeArellano, K., Johnson, R., Linton, L., McEwan, P., McKernan, K., Talamas, J., Tirrell, A., Ye, W., Zimmer, A., Barber, R.D., Cann, I., Graham, D.E., Grahame, D.A., Guss, A.M., Hedderich, R., Ingram-Smith, C., Kuettner, H.C., Krzycki, J.A., Leigh, J.A., Li, W., Liu, J., Mukhopadhyay, B., Reeve, J.N., Smith, K., Springer, T.A., Umayam, L.A., White, O., White, R.H., de Macario, E.C., Ferry, J.G., Jarrell, K.F., Jing, H., Macario, A.J.L., Paulsen, I., Pritchett, M., Sowers, K.R., Swanson, R.V., Zinder, S.H., Lander, E., Metcalf, W.W. and Birren, B. (2002) The Genome of M. acetivorans Reveals Extensive Metabolic and Physiological Diversity. Genome Research 12: 532-542. Gil, G.-C., Chang, I.-S., Kim, B.H., Kim, M., Jang, J.-K., Park, H.S. and Kim, H.J. (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosensors and Bioelectronics 18: 327-334. Gorby, Y.A., Beveridge, T.J. and Wiley, W.R., (2005) Composition, reactivity, and regulation of extracellular metal-reducing structures (nanowires) produced by dissimilatory metal reducing bacteria. Pacific Northwest National Laboratory (PNNL), Richland, WA. Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B., Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S.i., Logan, B., Nealson, K.H. and Fredrickson, J.K. (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences 103: 11358-11363. Hallenbeck, P.C. and Benemann, J.R. (2002) Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy 27: 1185-1193. Hawkes, F.R., Hussy, I., Kyazze, G., Dinsdale, R. and Hawkes, D.L. (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. International Journal of Hydrogen Energy 32: 172-184. Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C., Read, T.D., Eisen, J.A., Seshadri, R., Ward, N., Methe, B., Clayton, R.A., Meyer, T., Tsapin, A., Scott, J., Beanan, M., Brinkac, L., Daugherty, S., DeBoy, R.T., Dodson, R.J., Durkin, A.S., Haft, D.H., Kolonay, J.F., Madupu, R., Peterson, J.D., Umayam, L.A., White, O., Wolf, A.M., Vamathevan, J., Weidman, J., Impraim, M., Lee, K., Berry, K., Lee, C., Mueller, J., Khouri, H., Gill, J., Utterback, T.R., McDonald, L.A., Feldblyum, T.V., Smith, H.O., Venter, J.C., Nealson, K.H. and Fraser, C.M. (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20: 1118-1123. Hejazi, A. and Falkiner, F.R. (1997) Serratia marcescens. Journal of Medical Microbiology 46: 903-912. Hernandez, M.E., Kappler, A. and Newman, D.K. (2004) Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction. Applied and Environmental Microbiology 70: 921-928. Holladay, J.D., Hu, J., King, D.L. and Wang, Y. (2009) An overview of hydrogen production technologies. Catalysis Today 139: 244-260. Hu, H., Fan, Y. and Liu, H. (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Research 42: 4172-4178. Holmes, D.E., Chaudhuri, S.K., Nevin, K.P., Mehta, T., Methe, B.A., Liu, A., Ward, J.E., Woodard, T.L., Webster, J. and Lovley, D.R. (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environmental Microbiology 8: 1805-1815. Inoue, D., Tsutsui, H., Yamazaki, Y., Sei, K., Soda, S. and Fujita, M. (2008) Application of real-time polymerase chain reaction (PCR) coupled with ethidium monoazide treatment for selective quantification of viable bacteria in aquatic environment. Water Science and Technology 58: 1107-1112. Jiang, J. and Kucernak, A. (2004) Investigations of fuel cell reactions at the composite microelectrode solid polymer electrolyte interface. I. Hydrogen oxidation at the nanostructured Pt NafionR membrane interface. Journal of Electroanalytical Chemistry 567: 123-137. Jopia, P., Ruiz-Tagle, N., Villagran, M., Sossa, K., Pantoja, S., Rueda, L. and Urrutia-Briones, H. (2010) Biofilm growth kinetics of a monomethylamine producing Alphaproteobacteria strain isolated from an anaerobic reactor. Anaerobe 16: 19-26. Karnati, S.K.R., Sylvester, J.T., Ribeiro, C.V.D.M., Gilligan, L.E. and Firkins, J.L. (2009) Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis. Journal of Dairy Science 92: 3849-3860. Kiely, P., Call, D., Yates, M., Regan, J. and Logan, B. (2010) Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Applied Microbiology and Biotechnology 88: 371-380. Kiely, P.D., Cusick, R., Call, D.F., Selembo, P.A., Regan, J.M. and Logan, B.E. (2011a) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource Technology 102: 388-394. Kiely, P.D., Rader, G., Regan, J.M. and Logan, B.E. (2011b) Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresource Technology 102: 361-366. Kiely, P.D., Regan, J.M. and Logan, B.E. (2011c) The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Current Opinion in Biotechnology 22: 378-385. Kim, B.C., Park, J.R., Bae, J.W., Rhee, S.K., Kim, K.H., Oh, J.W. and Park, Y.H. (2006) Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. International Journal of Systematic and Evolutionary Microbiology 56: 75-79. Kim, B.H., Chang, I.S., Cheol Gil, G., Park, H.S. and Kim, H.J. (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters 25: 541-545. Kim, B.H., Ikeda, T., Park, H.S., Kim, H.J., Hyun, M.S., Kano, K., Takagi, K. and Tatsumi, H. (1999a) Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnology Techniques 13: 475-478. Kim, H.J., Hyun, M.S., Chang, I.S. and KIim, B.H. (1999b) A Microbial Fuel Cell Type Lactate Biosensor Using a Metal - Reducing Bacterium , Shewanella putrefaciens. Journal of Microbiology and Biotechnology 9: 365-367. Kim, H.J., Park, H.S., Hyun, M.S., Chang, I.S., Kim, M. and Kim, B.H. (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology 30: 145-152. Laspidou, C.S. and Rittmann, B.E. (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research 36: 2711-2720. Lee, H.-S. and Rittmann, B.E. (2010) Characterization of energy losses in an upflow single-chamber microbial electrolysis cell. International Journal of Hydrogen Energy 35: 920-927. Lee, H.-S., Torres, C.s.I., Parameswaran, P. and Rittmann, B.E. (2009) Fate of H2 in an Upflow Single-Chamber Microbial Electrolysis Cell Using a Metal-Catalyst-Free Cathode. Environmental Science & Technology 43: 7971-7976. Lee, H.-S., Vermaas, W.F.J. and Rittmann, B.E. (2010) Biological hydrogen production: prospects and challenges. Trends in Biotechnology 28: 262-271. Lenin Babu, M. and Venkata Mohan, S. (2012) Influence of graphite flake addition to sediment on electrogenesis in a sediment-type fuel cell. Bioresource Technology 110: 206-213. Lin, B., (2006) Composition and functioning of iron-reducing communities in two contrasting environments, i. e. a landfill leachate-polluted aquifer and estuarine sediments. Vruje Universiteit, Amsterdam. Liu, H., Cheng, S. and Logan, B.E. (2005a) Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell. Environmental Science & Technology 39: 658-662. Liu, H., Grot, S. and Logan, B.E. (2005b) Electrochemically Assisted Microbial Production of Hydrogen from Acetate. Environmental Science & Technology 39: 4317-4320. Liu, H., Ramnarayanan, R. and Logan, B.E. (2004) Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell. Environmental Science & Technology 38: 2281-2285. Logan, B.E. (2004) Peer Reviewed: Extracting Hydrogen and Electricity from Renewable Resources. Environmental Science & Technology 38: 160A-167A. Logan, B.E. (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Micro 7: 375-381. Logan, B.E., Call, D., Cheng, S., Hamelers, H.V.M., Sleutels, T.H.J.A., Jeremiasse, A.W. and Rozendal, R.A. (2008) Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environmental Science & Technology 42: 8630-8640. Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K. (2006) Microbial Fuel Cells:  Methodology and Technology†. Environmental Science & Technology 40: 5181-5192. Logan, B.E. and Regan, J.M. (2006a) Electricity-producing bacterial communities in microbial fuel cells. Trends in Microbiology 14: 512-518. Logan, B.E. and Regan, J.M. (2006b) Microbial Fuel Cells—Challenges and Applications. Environmental Science & Technology 40: 5172-5180. Logan, G.K.R.a.B.E. (2010) Multi-electrode continuous flow microbial electrolysis cellfor biogas production from acetate. International Journal of Hydrogen Energy 35: 8848-8854. Lovley, D.R. (2006) Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology 4: 497-508. Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A. and Goodwin, S. (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Archives of Microbiology 159: 336-344. Lovley, D.R., Holmes, D.E. and Nevin, K.P., (2004) Dissimilatory Fe(III) and Mn(IV) Reduction, Advances in Microbial Physiology. Academic Press, pp. 219-286. McInerney, M.J., Sieber, J.R. and Gunsalus, R.P. (2009) Syntrophy in anaerobic global carbon cycles. Current Opinion in Biotechnology 20: 623-632. McInerney, M.J., Struchtemeyer, C.G., Sieber, J., Mouttaki, H., Stams, A.J.M., Schink, B., Rohlin, L. and Gunsalus, R.P. (2008) Physiology, Ecology, Phylogeny, and Genomics of Microorganisms Capable of Syntrophic Metabolism. Annals of the New York Academy of Sciences 1125: 58-72. McKay, G.A., Woods, D.E., MacDonald, K.L. and Poole, K. (2003) Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infection and Immunity 71: 3068-3075. Methe, B.A., Nelson, K.E., Eisen, J.A., Paulsen, I.T., Nelson, W., Heidelberg, J.F., Wu, D., Wu, M., Ward, N., Beanan, M.J., Dodson, R.J., Madupu, R., Brinkac, L.M., Daugherty, S.C., DeBoy, R.T., Durkin, A.S., Gwinn, M., Kolonay, J.F., Sullivan, S.A., Haft, D.H., Selengut, J., Davidsen, T.M., Zafar, N., White, O., Tran, B., Romero, C., Forberger, H.A., Weidman, J., Khouri, H., Feldblyum, T.V., Utterback, T.R., Van Aken, S.E., Lovley, D.R. and Fraser, C.M. (2003) Genome of Geobacter sulfurreducens: Metal Reduction in Subsurface Environments. Science 302: 1967-1969. Min, B. and Logan, B.E. (2004) Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell. Environmental Science & Technology 38: 5809-5814. Morris, J.M., Jin, S., Crimi, B. and Pruden, A. (2009) Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chemical Engineering Journal 146: 161-167. Niessen, J., Schroder, U., Harnisch, F. and Scholz, F. (2005) Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Letters in Applied Microbiology 41: 286-290. Noguera, D.R., Araki, N. and Rittmann, B.E. (1994) Soluble microbial products (SMP) in anaerobic chemostats. Biotechnology and Bioengineering 44: 1040-1047. Parameswaran, P., Torres, C.I., Lee, H.-S., Krajmalnik-Brown, R. and Rittmann, B.E. (2009) Syntrophic interactions among anode respiring bacteria (ARB) and Non-ARB in a biofilm anode: electron balances. Biotechnology and Bioengineering 103: 513-523. Parameswaran, P., Zhang, H., Torres, C.I., Rittmann, B.E. and Krajmalnik-Brown, R. (2010) Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers. Biotechnology and Bioengineering 105: 69-78. Patil, S.A., Surakasi, V.P., Koul, S., Ijmulwar, S., Vivek, A., Shouche, Y.S. and Kapadnis, B.P. (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresource Technology 100: 5132-5139. Pham, T.H., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Vanhaecke, L., De Maeyer, K., Hofte, M., Verstraete, W. and Rabaey, K. (2008) Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Applied Microbiology and Biotechnology 77: 1119-1129. Pham, T.H., Aelterman, P. and Verstraete, W. (2009) Bioanode performance in bioelectrochemical systems: recent improvements and prospects. Trends in Biotechnology 27: 168-178. Pinto, R.P., Srinivasan, B., Escapa, A. and Tartakovsky, B. (2011) Multi-Population Model of a Microbial Electrolysis Cell. Environmental Science & Technology 45: 5039-5046. Potter, M.C. (1911) Electrical Effects Accompanying the Decomposition of Organic Compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 84: 260-276. Selembo, P.A., Perez, J.M., Lloyd, W.A. and Logan, B.E. (2009) High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. International Journal of Hydrogen Energy 34: 5373-5381. Rabaey, K., Boon, N., Hofte, M. and Verstraete, W. (2005) Microbial Phenazine Production Enhances Electron Transfer in Biofuel Cells. Environmental Science & Technology 39: 3401-3408. Rabaey, K., Boon, N., Siciliano, S.D., Verhaege, M. and Verstraete, W. (2004) Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer. Applied and Environmental Microbiology 70: 5373-5382. Rabaey, K. and Verstraete, W. (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology 23: 291-298. Ramanathan, V. and Feng, Y. (2009) Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmospheric Environment 43: 37-50. Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T. and Lovley, D.R. (2005) Extracellular electron transfer via microbial nanowires. Nature 435: 1098-1101. Reimers, C.E., Tender, L.M., Fertig, S. and Wang, W. (2001) Harvesting Energy from the Marine Sediment−Water Interface. Environmental Science & Technology 35: 192-195. Ren, Z., Ward, T.E. and Regan, J.M. (2007) Electricity Production from Cellulose in a Microbial Fuel Cell Using a Defined Binary Culture. Environmental Science & Technology 41: 4781-4786. Roy, F., Samain, E., Dubourguier, H.C. and Albagnac, G. (1986) Synthrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Archives of Microbiology 145: 142-147. Rozendal, R.A. and Buisman, C.J.N. (2010) Bio-electrochemical process for producing hydrogen. Stichting Wetsus Centre of Excellence for Sustainable Water Technology (Agora 1, 8934 CJ Leeuwarden, NL). Rozendal, R.A., Hamelers, H.V.M., Euverink, G.J.W., Metz, S.J. and Buisman, C.J.N. (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. International Journal of Hydrogen Energy 31: 1632-1640. Rozendal, R.A., Hamelers, H.V.M., Molenkamp, R.J. and Buisman, C.J.N. (2007a) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Research 41: 1984-1994. Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., Keller, J. and Buisman, C.J.N. (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology 26: 450-459. Rozendal, R.A., Jeremiasse, A.W., Hamelers, H.V.M. and Buisman, C.J.N. (2007b) Hydrogen Production with a Microbial Biocathode. Environmental Science & Technology 42: 629-634. Schauer, N.L. and Ferry, J.G. (1980) Metabolism of Formate in Methanobacterium formicicum. Journal of Bacteriology 142: 800-807. Schink, B. (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews 61: 262-280. Schleinitz, K.M., Schmeling, S., Jehmlich, N., von Bergen, M., Harms, H., Kleinsteuber, S., Vogt, C. and Fuchs, G. (2009) Phenol Degradation in the Strictly Anaerobic Iron-Reducing Bacterium Geobacter metallireducens GS-15. Applied and Environmental Microbiology 75: 3912-3919. Slater, H., Crow, M., Everson, L. and Salmond, G.P.C. (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum‐sensing‐dependent and‐independent pathways. Molecular Microbiology 47: 303-320. Song, T.-S. and Jiang, H.-L. (2011) Effects of sediment pretreatment on the performance of sediment microbial fuel cells. Bioresource Technology 102: 10465-10470. Speers, A.M. and Reguera, G. (2012) Electron Donors Supporting Growth and Electroactivity of Geobacter sulfurreducens Anode Biofilms. Applied and Environmental Microbiology 78: 437-444. Stams, A.J.M. and Plugge, C.M. (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Micro 7: 568-577. Steinberg, L.M. and Regan, J.M. (2008) Phylogenetic Comparison of the Methanogenic Communities from an Acidic, Oligotrophic Fen and an Anaerobic Digester Treating Municipal Wastewater Sludge. Applied and Environmental Microbiology 74: 6663-6671. Steinbusch, K.J.J., Arvaniti, E., Hamelers, H.V.M. and Buisman, C.J.N. (2009) Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation. Bioresource Technology 100: 3261-3267. Stock, I., Grueger, T. and Wiedemann, B. (2003) Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. International journal of antimicrobial agents 22: 35-47. Su, J.J. and Kafkewitz, D. (1994) Utilization of toluene and xylenes by a nitrate-reducing strain of Pseudomonas maltophilia under low oxygen and anoxic conditions. FEMS Microbiology Ecology 15: 249-257. Tartakovsky, B., Mehta, P., Santoyo, G. and Guiot, S.R. (2011) Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage. International Journal of Hydrogen Energy 36: 10557-10564. Tender, L.M., Reimers, C.E., Stecher, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J. and Lovley, D.R. (2002) Harnessing microbially generated power on the seafloor. Nature Biotechnology 20: 821. Thauer, R.K., Jungermann, K. and Decker, K. (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriology Reviews 41: 100-180. Tiwari, A. and Pandey, A. (2012) Cyanobacterial hydrogen production – A step towards clean environment. International Journal of Hydrogen Energy 37: 139-150. Torres, C.I., Krajmalnik-Brown, R., Parameswaran, P., Marcus, A.K., Wanger, G., Gorby, Y.A. and Rittmann, B.E. (2009) Selecting Anode-Respiring Bacteria Based on Anode Potential: Phylogenetic, Electrochemical, and Microscopic Characterization. Environmental Science & Technology 43: 9519-9524. Traub, W.H. (2000) Antibiotic Susceptibility of Serratia marcescens and Serratia liquefaciens. Chemotherapy 46: 315-321. Uchino, Y., Hirata, A., Yokota, A. and Sugiyama, J. (1998) Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. The Journal of General and Applied Microbiology 44: 201-210. Vandamme, P., Holmes, B., Bercovier, H. and Coenye, T. (2006) Classification of Centers for Disease Control Group Eugonic Fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov. and Neisseria zoodegmatis sp. nov., respectively. International Journal of Systematic and Evolutionary Microbiology 56: 1801-1805. Voggu, L., Schlag, S., Biswas, R., Rosenstein, R., Rausch, C. and Gotz, F. (2006) Microevolution of Cytochrome bd Oxidase in Staphylococci and Its Implication in Resistance to Respiratory Toxins Released by Pseudomonas. Journal of Bacteriology 188: 8079-8086. Wallrabenstein, C. and Schink, B. (1994) Evidence of reversed electron transport in syntrophic butyrate or benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii. Archives of Microbiology 162: 136-142. Wang, A., Liu, W., Cheng, S., Xing, D., Zhou, J. and Logan, B.E. (2009) Source of methane and methods to control its formation in single chamber microbial electrolysis cells. International Journal of Hydrogen Energy 34: 3653-3658. Waters , V.J., Gomez, M.I., Soong, G., Amin, S., Ernst, R.K. and Prince, A. (2007) Immunostimulatory Properties of the Emerging Pathogen Stenotrophomonas maltophilia. Infection and Immunity 75: 1698-1703. Weber, C.F. and King, G.M. (2007) Physiological, Ecological, and Phylogenetic Characterization of Stappia, a Marine CO-Oxidizing Bacterial Genus. Applied and Enviro Wenzong, L.I.U., Aijie, W., Shaoan, C., Logan, B.E., Hao, Y.U., Ye, D., Van Nostrand, J.D., Liyou, W.U., Zhili, H.E. and Jizhong, Z. (2010) Geochip-Based Functional Gene Analysis of Anodophilic Communities in Microbial Electrolysis Cells under Different Operational Modes. Environmental Science & Technology 44: 7729-7735. Williams, R.P. (1973) Biosynthesis of prodigiosin, a secondary metabolite of Serratia marcescens. Applied microbiology 25: 396-402. Williamson, N.R., Fineran, P.C., Leeper, F.J. and Salmond, G.P.C. (2006) The biosynthesis and regulation of bacterial prodiginines. Nat Rev Micro 4: 887-899. Williamson, N.R., Simonsen, H.T., Ahmed, R.A.A., Goldet, G., Slater, H., Woodley, L., Leeper, F.J. and Salmond, G.P.C. (2005) Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Molecular Microbiology 56: 971-989. Windhorst, S., Frank, E., Georgieva, D.N., Genov, N., Buck, F., Borowski, P. and Weber, W. (2002) The Major Extracellular Protease of the Nosocomial Pathogen Stenotrophomonas maltophilia. Journal of Biological Chemistry 277: 11042-11049. Wrana, N., Sparling, R., Cicek, N. and Levin, D.B. (2010) Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis. Journal of Cleaner Production 18: S105-S111. Xing, D., Cheng, S., Regan, J.M. and Logan, B.E. (2009) Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosensors and Bioelectronics 25: 105-111. Xu, K., Liu, H. and Chen, J. (2010) Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion.
摘要: 近年來生質氫能逐漸備受重視,原因為氫氣除了具有可儲存、運輸等優點外,其燃燒後產生之熱值約為汽油的三倍,且燃燒產物只有水與熱,為一潔淨無污染之能源載體。微生物電解電池(Microbial electrolysis cells, MECs)為一新穎產氫技術,藉由輸入外部能量的方式,可克服熱力學屏障,將厭氧暗醱酵程序所生成之液態代謝物藉由微生物催化電解的方式轉換成氫氣,進而提升整體氫氣產量。由於暗醱酵程序之液態代謝物多為丁酸、乙酸等有機物質,因此本研究以丁酸作為基質,探討其應用於微生物電解電池上之可行性與效能表現程度。 實驗以綠川底泥作為植種來源並以連續批次操作方式進行。研究結果顯示丁酸可於每批次結束後完全降解,僅少量乳酸累積,sCOD去除率平均可達95 %;庫侖氫氣回收率(rCE)平均約為15 %;菌相分析結果顯示系統中存在丁酸氧化菌Syntrophomonas sp.及胞外產電菌Geobacter metallireducens;在氣相組成方面,陽極槽氣體多為甲烷與二氧化碳,陰極槽則為甲烷與氫氣。藉由甲烷菌功能性基因分析確認系統中存在嗜氫甲烷菌,故實驗後期以縮短批次循環時間作為甲烷控制策略,結果顯示此操作策略確實可提升陰極槽氫氣產量,但對減少甲烷氣體無顯著影響。 由於植種來源內存在對MEC產氫表現有負面影響的甲烷菌群,故後續實驗中以BES(2-溴乙烷磺酸鈉)作為甲烷抑制劑,探討不同添加策略對MEC系統效能及微生物族群結構變化之影響。實驗結果顯示MEC在陰極槽添加BES 0.5 mM時可維持較佳效能,此操作時期的液相組成、COD去除率等皆可達到一定處理效果;菌相分析結果則顯示BES-added MEC陽極槽主要微生物為Pseudomonas sp.,系統中缺少可利用丁酸的Geobacter metallireducens與Syntrophomonas sp.可能是造成丁酸降解效率不佳的原因之一;陰極槽中所發現的Serratia marcescens、Stappia sp.、Neisseria animaloris等微生物可能會有與質子競爭電子之現象發生;兩電極上生物膜則皆存在可分泌EPS的Serratia marcescens。有文獻指出與BES長時間接觸下可能會改變包含產電菌在內的菌群結構,故推測添加50 mM BES於陽極槽中會對微生物族群的正常代謝作用造成間接影響,可能因此造成MEC中丁酸降解效果不佳。
Hydrogen productions via biological methods draw a lot of attentions in recent years. Hydrogen is one of the clean energy carriers due to its advantages on storage, transport and high heating value (three times of what gasoline has). Furthermore, it produces only water and heat after combustion. Microbial electrolysis cells (MECs), a novel hydrogen production technology, use microbial catalyzing electrolysis form to convert soluble organic metabolites into hydrogen by inputting external voltage to overcome the thermodynamics barrier. As butyrate and acetate are the main soluble metabolites of dark fermentation process, this study use butyrate as substrate to investigate the possibility for using effluent from anaerobic dark fermentation processes on MECs. In this study, sediment collected from Luchuan River was selected as the MEC inoculums and the reactor was operated in sequencing batch mode. Results showed that butyrate was utilized completely after each batch with small amounts of lactate remained. Average sCOD removal rate was around 95%, and the average Coulombic hydrogen recovery was about 15%. Microbial communities analysis showed the dominant bacteria were butyrate-utilizing bacteria Syntrophomonas sp. and exoelectrogens Geobacter metallireducens. For gas composition, CH4 and CO2 were the main gases in anode chamber and CH4 and H2 were detected in the headspace of cathode chamber. Since hydrogenotrophic methanogen was found to exist in the MEC using methanogenic functional gene analyzing technique, operation time for each batch cycle was shorten as the strategy of methane control. Results showed that this strategy could promote hydrogen production, but had no significant benefit on inhibiting methane production. Furthermore, Sodium 2-bromoethanesulfonate (BES) was selected as the methanogen-specific inhibitor to investigate the effects of MEC system efficiency and microbial community structure under different BES-added strategies. Better efficiencies were observed when adding 0.5 mM BES in the cathode chamber as showing in the liquid composition and COD removal rate. Microbial community results revealed that Geobacter metallireducens and Syntrophomonas sp. did not exist in the MES system after BES addition. This might be one of the reasons for the lower butyrate-degrading efficiency. Serratia marcescens, Stappia sp. and Neisseria animaloris which might compete for protons existed in the cathode. Moreover, Serratia marcescens which could secrete extracellular polymeric substances (EPS) was found on the anode and cathode biofilms. Since long-term exposure to BES might alter the anode microbial community including methanogens and exoelectrogens was reported in the reference, we speculate that adding 50 mM BES to the anode chamber could indirectly affect the metabolisms of microorganisms, and thus decreased the butyrate-degrading efficiency.
URI: http://hdl.handle.net/11455/5806
其他識別: U0005-2107201221420000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2107201221420000
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。