Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5810
標題: 以固相微萃取技術評估土壤特性對芳香族化合物生物有效性之影響
Effects of Soil Properties on Bioavailability Assessment of Aromatics and PAHs with Solid Phase Microextraction
作者: 蔡惠評
Tsai, Hui-Ping
關鍵字: 萘固相微萃取技術
solid phase microextraction (SPME)
生物有效性
毒性效應
苯與萘共存
bioavailability
benzene
naphthalene
multi-contaminants
toxic effect
出版社: 環境工程學系所
引用: 內政部統計處(2011)一○○年第二十五週內政統計通報 曲可喬 (2007) 以固相微萃取評估萘污染土壤生物可及性並預測生物復育之成效,國立中興大學環境工程學系,碩士論文 行政院勞工委員會及工業技術研究院(2001)物質安全資料表CAS. No. 00091-20-3 行政院環保署(2009)飲用水水質標準,環境法規查詢系統 行政院環保署環境檢驗所 (2005) NIEA S102.61B,土壤採樣方法 李孟哲 (2002) 純化菌株對於多環芳香族碳氫化合物-萘菲分解能力之研究,國立中興大學環境工程學系,碩士論文 邱明良 (2000) 受多環芳香族碳氫化合物-萘、菲污染土壤之生物復育研究,國立中興大學環境工程學系,碩士論文 陳呈芳 (2007)“土壤及地下水污染現地化學氧化整治技術及案例介紹”,清潔生產與環保技術e報,第45期 陳冠憓(2011)以固相微萃取技術評估土壤中PAHs-萘、菲和芘之生物有效性,國立中興大學環境工程學系,碩士論文 陳炳伸 (1997) 受2,4-二硝基酚污染土壤之生物復育,國立中興大學環境工程學系,碩士論文 黃敬德、謝有容 (1998) 固相微萃取技術之原理及其應用化學,56卷第4期,311-318 黃慧貞 (2006) 土壤有機質特異組成及含量對非離子有機化合物吸持行為之研究,國立中央大學環境工程研究所,博士論文 楊逸帆 (2003) 土壤有機質芳香性對非離子有機化合物分佈行為之影響,國立中央大學環境工程研究所,碩士論文 葉玉雯 (1999) 比較索氏萃取法與超臨界萃取法對含萘及五氯酚土壤萃取之研究,國立中興大學環境工程學系,碩士論文 劉祥兆 (2011) 土壤特性對芳香族化合物生物有效性之影響:固相微萃取技術對生物復育成效之預測,國立中興大學環境工程學系,博士論文 蔡啟堂(2002)五氯酚分解菌之生理特性探討,國立中山大學生物科學系,碩士論文 盧至人(1994)“處置土壤污染區之策略運用”,污染土地之整治與永續利用研討會論文集,7-1~7-5 盧至人(1997)地下水的污染整治,國立編譯館,台北 謝文賓(1993)多環芳香族化合物(PAHs)在土壤中之生物降解作用,臺灣大學環境工程研究所,碩士論文 蘇世昌 (1999) 受多環芳香族化合物-萘污染環境之生物復育可行性研究,國立中興大學環境工程學系,碩士論文 Albergaria, J.T., M. C. M. Alvim-Ferraz, and C. Delerue-Matos (2006) Remediation efficiency of vapour extraction of sandy soils contaminated with cyclohexane: Influence of air flow rate, water and natural organic matter content. Environ. Pollut. 143, 146-152 Alexander, M. (2000) Aging, bioavailability, and overestimation of risk from environmental contaminants. Environ. Sci. Technol. 34, 4259-4265 Allen, I. J., K. T. Semple, R. Hare, and B. J. Reid (2006) Prediction of mono-and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environ. Pollut. 144, 562-571 Aronstein, B. N., T. Y. Calvillo, and M. Alexander (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sci. Technol. 25, 1728-1731 Arvin, E., B. K. Jensen, and A. T. Gundersen ( 1989) Substrate interactions during aerobic biodegradation of benzene. Appl. Environ. Microbiol. 55, 3221-3225 Aulenta, F., S. Rossetti, M. Majone, and V. Tandoi (2004) Detection and quantitative estimation of Dehalococcoides spp. in a dechlorinating bioreactor by a combination of Fluorescent In Situ Hybridization (FISH) and kinetic analysis. Appl. Microbiol. Biotechnol. 64, 206-212 Autry, R. A. and G. M. Ellis (1992) Bioremediation:A effective remedial alternative for petroleum hydrocarbon-contaminated soil. Enviorn. Progress. 11, 218-323 Backe, C., I. T. Cousins, and P. Larsson (2004) PCB in soils and estimated soil-air exchange fluxes of selected PCB congeners in the south of Sweden. Environ. Pollut. 128, 59-72 Baek, D. S., S. B. Kim, and D. J. Kim (2003) Irreversible sorption of benzene in sandy aquifer materials. Hydrol. Process. 17, 1239-1251 Bastiaens, L. (1998) Isolation and characterization of polycyclic aromatic hydrocarbon- degrading bacteria, evaluation of the use of the isolates in soil slurry bioremediation. Leuven:Katholieke Universiteit Leuven. Bauer, J. E. and D. G. Capone. (1988) Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marin sediment slurries. App. Environ. Microbiol. 54, 1649-1655 Baun, A. and N. Nyholm (1996) Monitoring pesticides in surface water using bioassays on XAD-2 preconcentrated samples. Water Sci. Technol. 33, 339-347 Bergknut, M., E. Sehlin, S. Lundstedt, P. L. Andersson, P. Haglund, and M. Tysklind (2007) Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives. Environ. Pollut. 145, 154-160 Bonten, L. T. C. (2001) Improving bioremediation of PAH contaminated soils by thermal pretreatment. Ph.D. Dissertation, Wageningen University, The Netherlands Bosma, T., P. J. Middeldorp, G. Schraa, and A. J. B. Zehnder (1997) Mass transfer limitation of biotransformation:Quantifying bioavailability. Environ. Sci. Technol. 31, 248-252 Bragg, L., Z. Qin, M. Alaee, and J. Pawliszyn (2006) Field sampling with a polydimethylsiloxane thin-film. J. Chromatogr. Sci. 44, 317-323 Bumpus, J., M. Tien, D. Wright, and S. D. Aust (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Sci. 228, 1434- 1436 Cameotra, S. S., H. D. Singh, A. K. Hazarika, and J. N. Baruah (1983) Mode of uptake of insoluble solid substrates by microorganisms. II. Uptake of solid n-alkanes by yeast and bacterial species. Biotechnol. Bioeng. 25, 2945-2956 Carmichael, L. M., R. F. Christman, and F. K. Pfaender (1997) Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils. Environ. Sci. Technol. 31, 126-132 Chang, B. V., L. C. Shiung, and S. Y. Yuan (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere. 48, 717-724 Chen, W., A.T. Kan, and M. B.Tomson (2000) Irreversible adsorption of chlorinated enzenes to natural sediments:Implications for sediment quality criteria. Environ. Sci. Technol. 34, 385–392. Chen, Y. and J. Pawliszyn (2003) Time-weighted average passive sampling with a solid-phase microextraction device. Anal. Chem. 75, 2004-2010 Chen, Y. and J. Pawliszyn (2004) Solid-phase microextraction field sampler. Anal. Chem. 76, 6823-6828 Chiou, C. T. and D. S. Thomas (1985) Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environ. Sci. Technol. 19, 1196-1200 Chiou, C. T. and T. D. Shoup (1985) Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity. Environ. Sci. Technol. 19, 1196-1200 Chiou, C. T., S. E. McGroddy, and D. E. Kile (1998a) Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ. Sci. Technol. 32, 264-269 Chisholm, R. C. and L. Koblitsky (1943) Sorption of methyl bromide by soil in a fumigation chamber. J. Econ. Entomol. 36, 545-551 Chung, J. R. Brown, and B. E. Rittmann (2008) Bioreduction of trichloroethene using a hydrogen-based membrane biofilm reactor. Environ. Sci. Technol. 42, 477-483 Chung, N. and M. Alexander (1998) Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. Environ. Sci. Technol. 32, 855-860 Chung, N. and M. Alexander (2002) Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48, 109-115 Coble, R. L. (1968)“Development of microstructures in ceramic systems” 8-80 in Ceramic Microstructures, Fulrath R. M.and Pask. J. A. (Ed.) Wiley, New York, U.S.A. Conder, J. M. and T. W. la Point (2005) Solid phase microextraction for predicting the bioavailability of 2,4,6-trinitrotoluene and its primary transformation products in sediment and water. Environ. Toxicol. Chem. 24, 1059-1066 Conder, J. M., W. L. P. Thomas, R. L. Guilherme, and J. A. Steevens (2003) Nondestructive, minimal-disturbance, direct-burial solid-phase microextraction fiber technique for measuring TNT in sediment. Environ. Sci. Technol. 37, 1625-1632 Cornelissen, G., M. van der Pal, P. C. M. van Noort, and H. A. J. Govers (1999) Competitive effects on the slow desorption of organic compounds from sediments. Chemosphere 39, 1971-1981 Cornelissen, G., P. C. M. van Noort, and H. A. J. Grovers (1997b) Desorption kinetics of chlorobenezenes, polycyclic aromatic hydrocarbons, and polychlorinated biophenyls:sediment ectraction with tenax and effects of contact time. J. Environ. Toxicol. Chem. 16, 1351-1357 Cornelissen, G., P. C. M. van Noort, and H. A. J. Grovers (1998a) Mechanisms of slow desorption of organic compounds from sediments: a study using model sorbents. Environ. Sci. Technol. 32, 3124-3131 Cornelissen, G., P. C. M. van Noort, J. R. Parsons, and H. A. J. Govers (1997a) Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments. Environ. Sci. Technol. 31, 454-460 Courter, L. A., T. Musafia-Jeknic, K. Fischer, R. Bildfell, J. Giovanini, C. Pereira, and W. M. Baird (2007) Urban dust particulate matter alters PAH-induced carcinogenesis by inhibition of CYP1A1 and CYP1B1. Toxicol. Sci. 95, 63-73 Cuypers, C. (2001) Bioavailability of polycyclic aromatic hydrocarbons in soils and sediments. Ph.D. Dissertation, Wageningen University, Wageningen, Then Netherlands Cuypers, C., T. Grotenhuis, J. Joziasse, W. Rulkens (2000) Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ. Sci. Technol. 34, 2057-2063 Cuypers, C., T. Pancras, T. Grotenhuis, and W. Rulkens (2002) The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl- beta- cyclodextrin and Triton X-100 extraction techniques. Chemosphere. 46, 1235-1245 Dandie, C. E., J. Weber, S. Aleer, E. M. Adetutu, A. S. Ball, and A, L. Juhasz (2010) Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Chemosphere. 81, 1061–1068 de Fatima Alpendurada, M. (2000) Solid-phase microextraction:A promising technique for sample preparation in environmental analysis. J. Chromatogr. A. 889, 3–14 Dewsbury, P., S. F. Thornton, and D. N. Lerner (2003) Improved analysis of MTBE, TAME, and TBA in petroleum fuel-contaminated groundwater by SPME using deuterated internal standards with GC-MS. Environ. Sci. Technol. 37, 1392-1397 Dibble, J. T. and R. Bartha (1979) Effect of iron on biodegration of petroleum in seawater. App. Enviorn. Micobiol. 31, 544-550 Dron, L., R. Garcia, and E. Millan (2002) Optimization of headspace solid-phase microextraction by means of an experimental design for the determination of methyl tert.-butyl ether in water by gas chromatography-flame ionization detection. J. Chromatogr. A. 963, 259-264 Ehlers, L. J. and R. G. Luthy (2003) Contaminant bioavailability in soil and sediment. Environ. Sci. Technol. 37, 295A-302A Fang, G. C., C, N. Chang, Y. S. Wu, P. C. Fu, I. L. Yang, and M. H. Chen (2004) Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Sci. Total Environ. 327, 135-146 Florez Menendez, J.C., M. L. Fernandez Sanchez, J. E. Sanchez Uria, E. Fernandez Martinez, A. Sanz-Medel (2000) Static headspace, solid-phase microextraction and headspace solid-phase microextraction for BTEX determination in aqueous samples by gas chromatography. Analytica Chimica Acta 415. 9–20 Gao, Y. and L. Zhu (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere , 55, 1169-78 Gomez-Eyles, J. L., C. D. Collins, and M. E. Hodson (2010) Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioassays and chemical methods to predict bioavailability. Environ. Pollut. 158, 278-284 Gordon, A. S. and F. J. Millero (1985) Adsorption-mediated decrease in the biodegradation rate of organic compounds. Microbiol. Ecology. 11, 289-298 Gozgit, J. M., K. M. Nestor, M. J. Fasco, B. T. Pentecost, and K. F. Arcaro (2004) Differential action of polycyclic aromatic hydrocarbons on endogenous estrogen-responsive genes and on a transfected estrogen-responsive reporter in MCF-7 cells. Toxical. Appl. Pharmacol. 196, 58-67 Grasso, D. (1993) Hazardous Waste Site Remediation, Source Control. Lewis Guerin, W. F. and S. A. Boyd (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl. Environ. Microbiol. 58, 1142-1152 Hall, J. A., B. J. Mailloux, T. C. Onstott, T. D. Scheibe, M. E. Fuller, H. Dong, and M. F. DeFlaun (2005) Physical vesus chemical effects on bacterial and bromide transport as determined from on site sediment column pulse experiments. J. Contam. Hydrol. 76, 295-314 Hanson, W. J. and R. W. Nex (1953) Diffusion of ethylene dibromide in soils. Soil Sci. 76, 209-214 Hassink, J., L. A. Bouwman, K. B. Zwart, and L. Brussaard (1993) Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biol. Biochem. 25, 47-55 Hatzinger, P. B. and M. Alexander (1995) Effect of ageing of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol. 29, 537-545 Hendriks, J. (2003) Possible application of Solid Phase Micro Extraction for determination of pesticide availability in sediment. Master Thesis,Wageningen University, Wageningen, The Netherlands Herrchen, M., R. Debus, and R. Pramanik-Strehlow (1997) Bioavailability as a key property in terrestrial ecotoxicity assessment and evaluation. Fraunhofer IRB Verlag Stuttgart Germany Horng, R. S., C. H. Kuei, and W. C. Chen (2009) Enhancement of aromatic hydrocarbon biodegradation by toluene and naphthalene degrading bacteria obtained from lake sediment: the effects of cosubstrates and cocultures. J. Environ. Eng.154-860 Hu, X., J. Liu, Q. Zhou, S. Lu, R. Liu, L. Cui, D. Yin, P. Mayer, and G. Jiang (2010) Bioavailability of organochlorine compounds in aqueous suspensions of fullerene: Evaluated with medaka (Oryzias latipes) and negligible depletion solid-phase microextraction. Chemosphere. 80, 693-700 Huesemann, M. H., T. S. Hausmann, and T. J. Fortman (2002) Microbial factors rather than bioavailability limit the rate and extent of PAH biodegradation in aged crude oil contaminated model soils. Bioremed. J. 6, 321-336 Joner, E. J., S.C. Corgie, N. Amellal, and C. Leyval (2002) Nutritional contributions to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Biol. Biochem. 34, 859-864 Jones, K. C., R. E. Alcock, D. L. Johnson, G. L. Northcott, K. T. Semple, and P. J. Woolgar (1996) Organic chemicals in contaminated land: analysis, significance and research priorities. Land Contamination and Reclamation. 4, 189-197 Kan, A. T., G. Fu, M. A. Hunter, and M. B. Tomson (1997) Irreversible adsorption of naphthalene and tetrachlorobiphenyl to Lula and surrogate sediments. Environ Sci. Technol. 31, 2176-2185 Kelsey, J. W., A. Colino, and J. C. White (2005) Effect of species differences, pollutant concentration, and residence time in soil on the bioaccumulation of 2,2-BIS (p-chlorophenyl)-1,1-dichloroethylene by three earthworm species. Environ. Toxicol. Chem. 24, 703–708. Khaled, A. and J. Pawliszyn (2000) Time-weighted average sampling of volatile and semi-volatile airborne organic compounds by the solid-phase microextraction device. J. Chromatogr. A. 892, 455-467 Kim, S. B., H. C. Ha, N. C. Choi, and D. J. Kim (2006) Influence of flow rate and organic carbon content on benzene transport in a sandy soil. Hydrol. Process. in Wiley InterScience. 20, 4307–4316 Kim, S. B., I. Hwang, D. J. Kim, S. Lee, and W. A. Jury (2003) Effect of Sorption on Benzene Biodegradation in Sandy Soil. Environ. Toxicol. Chem. 22, 2306–2311 Koziel, J., J. Noah, and J. Pawliszyn (2001) Field sampling and determination of formaldehyde in indoor air with solid-phase microextraction and on-fiber derivatization. Environ. Sci. Technol. 35, 1481-1486 Koziel, J., M. Jia, and J. Pawliszyn (2000) Air sampling with porous solid-phase microextraction fibers. Anal. Chem. 72, 5178-5186 Kuch, H. M. and K. Ballschmiter (2000) Determination of endogenous and exogenous estrogens in effluents from sewage treatment plants at the ng/l-level. Fresenius J. Anal. Chem. 366, 392-395 Kulik, N., A. Goi, M. Trapido, and T. Tuhkanen (2006) Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J. Environ. Manage. 78, 382-391 Lambert, S. M. (1976) Functional relationship between sorption in soil and chemical Structure, J. Agric. Food Chem. 15, 572-576 Lei, L., M. T. Suidan, A. P. Khodadoust, and H. H. Tabak (2004) Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption. Environ. Sci. Technol. 38, 1786-1793 Lestremau, F., F. A. T. Andersson, V. Desauziers, and J. Fanlo (2003) Evaluation of solid-phase microextraction for time-weighted average sampling of volatile sulfur compounds at ppb concentrations. Anal. Chem. 2626-2632 Liang, X., S. Zhu, P. Chen, and L. Zhu (2010) Bioaccumulation and bioavailability of polybrominated diphynel ethers (PBDEs) in soil. Environ. Pollut. 158, 2387-2392 Linz, D. G. and D. V. Nakles (ed.) (1997) Environmentally acceptable endpoints in soil. Am. Academy of Environ. Eng. New York. Liste, H. H. and M. Alexander (2002) Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere. 46, 1011-1017 Luthy, R. G., G. R. Aiken, M. L. Brusseau, S. D. Cunningham, P. M. Gshwend, J. J. Pignatello, M. Reinhard, S. J. Traina, Jr. W. J. Weber, and J. C. Westall (1997) Sequestration of hydrophobic organic contaminations by geosorbents. Environ. Sci. Technol. 31, 3341-3347 Mahadevan, B., C. P. Marston, W. M. Dashwood, Y. Li, C. Pereira, and W. M. Baird (2005) Effect of a standardized complex mixture derived from coal tar on the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons in human cells in culture. Chem. Res. Toxicol. 18, 224-231 Malekani, K., J. A. Rice, and J. S. Lin (1997) The effect of sequential removal of organic matter on the surface morphology of humin. Soil Sci. 162, 333-342 Maliszewska-Kordybach, B. (2005) Dissipation of polycyclic aromatic hydrocarbons in freshly contaminated soils – The effect of soil physicochemical properties and aging. Water, Air, and Soil Pollut. 168, 113-128 Mane, M. (1998) Activated carbon adsorption fundamentals. In encyclopedia of environmental analysis and remediation, Myers, R. A. Ed., Wiley, New York, 26-68 Mayer, L. M. (1994a) Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta, 58, 1271–1284. Mayer, L. M. (1994b) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol, 114, 347-363. McCarty, P. L. (1988) ─“Bioengineering issues related to in situ remediation of contaminated soils and groundwater in G. S. Omenn(ed) ” Environ. Biotechnol. lenum, New York. 143-163 Miller, M. E. and M. Alexander (1991) Kinetics of bacterial degradation of benzylamine in a montmorillonite suspension. Environ. Sci. Technol. 25, 240-245 Miller, R. M. and R. Bartha (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl. Environ. Microbiol. 55, 269-274 Mott, S. C., P. H. Groenevelt, and R. P. Voroney (1990) Biodegradation of a gas oil applied to aggregates of different sizes. J. Environ. Qual. 19, 257-260 Nam, K. and M. Alexander (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability: Tests with model solids. Environ. Sci. Technol. 32, 71-74 Nam, K. and M. Alexander (2001) Relationship between biodegradation rate and percentage of a compound that becomes sequestered in soil. Soil Biol. Biochem. 33, 787-792 Napola A., M. D. R. Pizzigallo, P. Di Leo, M. Spagnuolo, and P. Ruggiero (2006) Mechanochemical approach to remove phenantherne from a contaminated soil. Chemoshpere, 65, 1583-1590 Ogram, A. V., R. E. Jessup, L. T. Ou, and P. S. Rao (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic acid in soils. Appl. Environ. Microbiol. 49, 582-587 Olson, P. E., A. Castro, M. Joern, N. M. duteau, E. pilon-Smits, and K. F. Reardon (2008) Effects of agronomic practices on phytoremediation of an aged PAH-contaminated soil. J. Environ. Qual. 37, 1439-1446 Ong, S. K. and L. W. Lion (1991a) Mechanisms for trichloroethylene vapo sorption onto soil minerals. J. Environ. Qual. 20, 180-188 Ong, S. K. and L. W. Lion (1991b) Trichloroethylene vapor sorption onto soil minerals. Soil Sci. Soc. Am. J. 55, 1559-1568 Ouyang, G., Y. Chen, and J. Pawliszyn (2005) Time-weighted average water sampling with a solid-phase microextraction device. Anal. Chem. 77, 7319-7325 Patsias, J., E. N. Papadakis, and E. Papadopoulou-Mourkidou (2002) Analysis of phenoxyalkanoic acid herbicides and their phenolic conversion products in soil by microwave assisted solvent extraction and subsequent analysis by on-line solid-phase extraction–liquid chromatography. J. Chromatogr. A. 959, 153-161 Pawliszyn, J. (1997) Solid phase microextraction theory and practice. Wiley-VCH, Inc., Canada Pliskova, M., J. Vondracek, and B. Vojtesek (2005) Deregulation of cell proliferation by polycyclic aromatic hydrocarbons in human breast carcinoma MCF-7 cells reflects both genotoxic and nongenotoxic events. Toxocol. Sci. 83, 246-256 Pollard, S. J. T., S. E. Hrudey, and P. M. Fedorak (1994) Bioremediation of petroleum-and creosote-soils:A review of constraits. Waste Manage. Res. 12, 173-194 Preuss, R., J. Angerer, and H. Drexler (2003) Naphthalene-an environmental and occupational toxicant. Int. Arch. Occup. Environ. Health. 76, 556576 Publisher, Boca Raton. Reid, B. J., A. L. Swindell, I. J. Allen, and K. T. Semple (2005) ─“Predicting bioremediation endpoints based on cyclodextrin extractable fractions”In:B. C. Alleman and M. E. Kelley (Conference Chairs), In Situ and On-Site Bioremediation (2005). Proceedings of the Eighth International. In Situ and On-Site Bioremediation Symposium (Baltimore, Maryland; June 6-9,2005). ISBN 1-57477-152-3, Battelle Press: Columbus, OH., pp. F-15 Reid, B. J., K. C. Jones, and K. T. Semple (2000b) Bioavailability of persistent organic contaminants in soils and sediments-a perspective on mechanisms, consequences and assessment. Environ. Pollut. 108, 103-112 Reid, B. J., K. C. Jones, and K. T. Semple (2000b) Bioavailability of persistent organic contaminants in soils and sediments-a perspective on mechanisms, consequences and assessment. Environ. Pollut. 108, 103-112 Richter, B. E. (2000) Extraction of hydrocarbon contamination form soils using accelerated solvent extraction. J. Chromatogr. A. 874, 217-224 Rojo-Nieto, Elisa. and J. A. Perales-Vargas-Machuca (2012)“Microbial degradation of PAHs:Organisms and environmental compartments.” In Microbial Degradation of Xenobiotics S. N. Singh (ed) Ruiz, J., R. Bilbao, and M. B. Murillo (1998) Adsorption of different VOC onto soil minerals from gas phase: Influence of mineral, Type of VOC, and Air Humidity. Environ. Sci. Technol. 32, 1079-1084 Sayles, G. D., C. M. Acheson, M. J. Kupferle, Y. Shan, Q. Zhou, J. R. Meier, L. Chang, and R. Brenner (1999) Land treatment of PAH contaminated soil: performance measured by chemical and toxicity assays. Environ. Sci. Technol. 33, 4310-4317 Semple, K. T., B. J. Reid, and T. R. Fermor (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants: a review. Environ. Pollut. 112, 269-283 Semple, K. T., K. J. Doick, K. C. Jones, A. Craven, P. Burauel, and H. Harms (2004) Defining bioavailability and bioaccessibility for the risk assessment and remediation of contaminated soils and sediments. Environ. Sci. Technol. 38, 228A-231A Semple, K. T., K. J. Doick, K. C. Jones, A. Craven, P. Burauel, and H. Harms (2004) Defining bioavailability and bioaccessibility for the risk assessment and remediation of contaminated soils and sediments. Environ. Sci. Technol. 38, 228A-231A Senatalar, A., J. A. Bergendahl, and R. W. Thompson (2004) Observation on soild phase micro extraction for MTBE analysis. Chemosphere. 57, 523-527 Seo, J. S., Y. S. Keum, and Q. X. Li (2009) Bacterial degradation of aromatic compounds. Int. J. Environ. Res. Public Health, 6, 278- 309 Sims, R. and J. Bass (1984) Review of in-place treatment techniques for contaminated surface soils. EPA Report. 1, 2-84 Skopp, J., M. D. Jawson, and J. W. Doran (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 54, 1619-1625 Snyder, R. and C. C. Hedli (1996) An Overview of Benzene Metabolism. Environ. Health Perspectives. 104, 1165-1171 Soares, A. A., J. T. Albergaria, V. F. Domingues, M. C. M. Alvim-Ferraz, and C. Delerue-Matos (2010) Remediation of soils combining soil vapor extraction and bioremediation: Benzene. Chemosphere. 80, 823-828 Sormunen, A. J., A. I. Tuikka, J. Akkanen, T. Leppanen, and J. V. K. Kukkonen (2010) Predicting the bioavailability of sediment-associated spiked compounds by using the polyoxymethylene passive sampling and Tenax extraction methods in sediments from three river basins in Europe. Arch. Environ. Contam. Toxicol. 59, 80-90 Spacie, A. and J. L. Hamelink (1995) Bioaccumulation. In: Fundamentals ofaquatic toxicology, effects, environmental fate and risk assessment, ed GM Rand, 2nd edn, Taylor and Francis Washington DC. Steinberg, S. M., J. S. Schmeltzer, and D. K. Kreamer (1996) Sorption of benzene and trichloroethylene on a desert soil:Effects of moisture and organic matter. Chemosphere. 33, 961-980 Stokes, J. D., A. Wilkinson, B. J. Reid, K. C. Jones, and K. T. Semple (2005) Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-β-cyclodextrin extraction technique. Environ. Toxicol. Chem. 24, 1325-1330 Stokes, J. D., G. I. Paton, and K. T. Semple (2006) Behaviour and assessment of bioavailability of organic contaminants in soil: relevance for risk assessment and remediation. Soil Use Manage. 21, 475-486 Supelco (1997) SPME portable field sampler with 100μm PDMS fiber. T497174 Supelco (1998) Supelco Chromatography. 3223 Swindell, A. L. and B. J. Reid (2006) Comparison of selected non-exhaustive extraction techniques to assess PAH availability in dissimilar soils. Chemosphere. 62, 1126-1134 Tang, J., E. J. Petersen, and W. J. Jr. Weber (2008) Development of engineered natural organic sorbents for environmental applications:4. Effects on biodegradation and distribution of pyrene in soils. Environ. Sci. Technol. 42, 1283-1289 Tang, J., E. J. Petersen, Q. Huang, and W. J. Jr. Weber (2007) Development of engineered natural organic sorbents for environmental applications:3. Reducing PAH mobility and bioavailability in contaminated soil and sediment systems. Environ. Sci. Technol. 41, 2901-2907 Tao, Y., S. Zhang, Z. Wang, and P. Christier (2008) Predicting bioavailability of PAHs in soils to wheat roots with triolein-embedded cellulose acetate membranes and comparison with chemical extraction. J. Agric. Food Chem. 56, 10817-10823 Ter laak, T. L., A. Barendregt, and J. L. M. Hermens (2006) Freely dissolved pore water concentrations and sorption coefficients of PAHs in spiked, aged, and field-contaminated soils. Environ. Sci. Technol. 40, 2184-2190 Trimble, T. A., J. You, and M. J. Lydy (2008) Bioavailability of PCBs from field-collected sediments: Application of Tenax extraction and matrix-SPME techniques. Chem. 71, 337-344 Trzesicka-Mlynarz, D. and O. P. Ward (1995) Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures obtained from PAH-contaminated soil. Can J Microbiol 41,470-476 Tsai, S. W. and T. A. Chang (2002) Time-weighted average sampling of airborne n-valeraldehyde by a solid-phase microextration device. J. Chromatogr. A. 191-198 Van Der Heijden, S. A. and M. T. O. Jonker (2009) PAH bioavailability in field sediments:Comparing different methods for predicting in situ bioaccumulation. Environ. Sci. Technol. 43, 3757-3763 Van der Wal, L., C. A. M. V. Gestel, and J. L. M. Hermens (2004a) Solid phase microextraction as a tool to predict internal concentrations of soil contaminants in terrestrial organisms after exposure to a laboratory standard soil. Chemosphere. 54, 561-568 Van der Wal, L., T. Jager, R. H. L. J. Fleuren, A. Barendregt, T. L. Sinnige, and C. A. M. Hermens (2004b) Solid-phase micro extraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ. Sci. Technol. 38, 4842-4848 Van Leeuwen, C. J. and J. L. M. Hermens (1995) Terrestrial toxicity. In risk assessment of chemicals, An introduction. Kluwer Academic Dordrecht Netherlands. 211-216 Volkering, F. (1996) Bioavailability and biodegradation of polycyclic aromatic hydro- carbons. Ph.D Thesis,Wageningen University, Wageningen, The Netherlands Wang, J. M., R. M. Maier, and M. L. Brusseau (2005) Influence of hydroxypropyl- β-cyclodextrin (HPCD) on the bioavailability and biodegradation of pyrene. Chemosphere. 60, 725-728 Weber, W. J. Jr. and T. M. Young (1997) A distributed reactivity model for sorption by soils and sediments. 6. Mechanistic implications of desorption under supercritical fluid conditions. Environ. Sci. Technol. 31, 1686-1691 White, J. C. and J. J. Pignatello (1999) Influence of bisolute competition on the desorption kinetics of polycyclic aromatic hydrocarbons in soil. Environ. Sci. Technol. 33, 4292-4298 White, J. C., M. Hunter, J. J. Pignatello, and M. Alexander (1999a) Increase in bioavailability of aged phenanthrene in soils by competitive displacement with pyrene. Environ. Toxicol. Chem. 18, 1728-1732 Wild, S. R. and K. C. Jones (1995) Polynuclear aromatic hydrocarbons in the United-Kingdom environment-a preliminary source inventory and budget. Environ. Pollut. 88, 91-108 Wu, X. M., Y. L. Yu, M. Li, Y. H. Long, H. Fang, and S. N. Li (2011) Prediction of bioavailability of chlorpyrifos residues in soil to earthworms. J. Soil Sci. Plant Nutr. 11 (1), 44 – 57 Xing, B. and J. J. Pignatello (1997) Dual-mode sorption of low-polarity compounds in glassy poly (vinyl chloride) and soil organic matter. Environ. Sci. Technol. 31, 792-799 Yang, H. H., R. C. Jung, Y. F. Wang, and L. T. Hsieh (2005b) Polycyclic aromatic hydrocarbon emissions from joss paper furnaces. Atmos. Environ. 39, 3305-3312 Yang, X., F. Wang, C. Gu, and X. Jiang (2010) Tenax TA extraction to assess the bioavailability of DDTs in cotton field soils. J. Hazard. Mater. 179, 676-683 Yang, Y. and J. Zeyer (2003) Specific detection of Dehalococcoides species by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide Probes. Appl. Environ. Microbiol. 69, 2879-2883 Yeom, I. T. and M. M. Ghosh (1998) Mass transfer limitation in PAH-contaminated soil remediation. Water Sci. Technol. 37, 111-118 You, J., P. F. Landrum, and M. J. Lydy (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ. Sci. Technol. 40, 6348-6353 You, J., P. F. Landrum, T. A. Trimble, and M. J. Lydy (2007) Availability of polychlorinated biphenyls in field- contaminated sediment. Environ. Toxicol. Chem. 26, 1940-1948 Zhang, X. and L. Y. Young (1997) Carboxylation as an initial reaction in anaerobic metabolism of naphthalene and phenanthrene by Sulfidogenic consortia. Appl. Environ. Microbiol. 63, 4759-4764 Zhao, W., G. Ouyang, M. Alaee, and J. Pawliszyn (2006) On-rod standardization technique for time-weighted average water sampling with a polydimethyl- siloxane rod. Chromatogr. A. 1124, 112-120
摘要: 本研究以單環芳香族化合物─苯(benzene)與雙環芳香族化合物─萘(naphthalene, Nap)為目標污染物,於不同實驗條件下,探討芳香族化合物生物降解情形並選用固相微萃取技術(Solid phase microextraction, SPME)預測污染物的生物有效性;探討實際生物降解量與生物有效性預測值之間相關性,期望能以SPME評估土壤受苯與萘污染之生物有效性。 由生物降解試驗結果發現,苯或萘污染濃度達5000 μg/g-soil會造成現地菌毒性效應,植種菌則未有毒性效應。當土壤質地為坋質壤土時受單一苯污染,微生物降解情形呈現二階段(快速降解-緩慢降解)趨勢;隨著土壤有機質含量與污染濃度的增加,微生物的遲滯期有增加趨勢,其中有機質含量的增加因污染物脫附速率為速率限制步驟,使得生物降解量與降解速率皆降低。 苯與萘共存於不同特性的土壤中,可發現質地或有機質含量的改變對於微生物的污染物降解量與降解速率皆無顯著的影響;然而,相同批次條件下萘相對於苯,微生物更容易分解利用萘,使得萘生物降解量與降解速率皆比苯顯著,主要原因為微生物的馴養條件與污染物特性所使然。 就固相微萃取技術預測值與實際微生物降解量的相關性而言,實驗結果顯示兩者相關性並不佳,SPME技術大多有高估生物有效性的現象,其中萘相較於苯,SPME較能準確預測萘生物有效性。不能正確評估水溶相苯的生物有效性的主要原因為苯具高揮發特性所使然,使固相微萃取技術評估值出現偏差的現象。
The objective of this study was to use Solid Phase Microextraction (SPME) as a tool to assess the bioavailability of benzene and naphthalene in soil. The SPME extractable contaminants would be employed to compare to the actual biodegradable amount of contaminants. These experiments were conducted by a series of batch soil reactor with various conditions, including different soil textures, organic contents, multi-contaminants, and pollutant concentrations. When benzene or naphthalene concentration reached 5000 μg/g-soil, toxic effect was observed in soils containing only indigenous microorganism. Experimental results indicated that when the sandy loam soil was contaminated by benzene, the biodegradation rate decreased with an increase in concentrations, but the biodegradation extents were remarkable enhanced with the addition of seeded microorganism. The bioavailability and the biodegradation rate of benzene in soils decreased with an increase in SOM contents. The result of multi-contaminants (benzene and naphthalene) degradation tests showed that the soil textures and SOM contents had no effects on the bioavailability. However, the result demonstrated that the biodegradation extent of naphthalene was much higher than that of benzene and so of the biodegradation rate due to the properties of microorganisms and chemicals. For all tested samples, the correlation between SPME extractable contaminants and biodegradable contaminants revealed that SPME overestimated the actual amount of biodegradation. Especially the result inferred that SPME could not properly estimate the bioavailability of benzene in soils contaminated by benzene only or by both benzene and naphthalene. Contrast with benzene, SPME is more accurate assess the biodegradeation of naphthalene
URI: http://hdl.handle.net/11455/5810
其他識別: U0005-0708201215094200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708201215094200
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.