請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5811
標題: 以奈米零價鐵整治地下水中四氯乙烯污染 之模場研究
A Pilot Study for the In-situ NZVI Remediation of PCE-contaminated Groundwater
作者: 黃泓翔
Huang, Hung-Hsiang
關鍵字: 奈米零價鐵
nanoscale zero-valent iron
non-aqueous phase liquids
出版社: 環境工程學系所
引用: Arnold, W.A., A.L. Roberts. 2000. Pathway and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 34, 1794-1805. Bedient, P.B., H.S. Rifal, and C.J. Newell. 1999. Ground Water Contamination: transport and remediation. 2nd Edition. Prentice-Hall. Burris, D.R., T.J. Campbell, and V.S. Manoranjan. 1995. Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron-Water System. Environ. Sci. Technol. 29: 2850-2855. Cost and Performance Report: Evaluating the longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites. U.S. Department of Defense, January 2003. Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environ. Sci. Technol. 39: 1309-1318. Domenico, P.A. and F.W. Schwartz. 1990. Physical and Chemical Hydrogeology. John Wiley & Sons. Elsner, M., M. Chartrand, N. VanStone, G. Lacrampe Couloume, B. Sherwood Lollar. 2008. Identifying Abiotic Chlorinated Ethene Degradation: Characteristic Isotope Patterns in Reaction Products with Nanoscale Zero-Valent Iron. Environ. Sci. Technol. 42: 5963-5970. Elliott, D.W. and Zhang, W.X. 2001. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environ. Sci. Technol. (24): 4922-4926. Everett, D.H. 1989. Basic Principles of Colloid Science. The Royal Society of Chemistry. (London). Gillham, R.W. and S.F. O’Hannesin. 1994. Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron. Groundwater. 32(6): 958-967. He, F. and D. Zhao. 2005. Preparation and characterization of a New class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water. Environ. Sci. Technol. 39: 3314-3320. He, F., D. Zhao. 2007 Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers. Environ. Sci. Technol. 41: 6216-6221. Kim, J.-H., P.G. Tratnyek., Y.-S. Chang. 2008 Rapid Dechlorination of Polychlorinated Dibenzo-p-dioxins by Bimetallic and Nanosized Zerovalent Iron. Environ. Sci. Technol. 42: 4106-4112. Karn, B., T. Masciangioli, W.X. Zhang, V. Colvin, and P. Alivasatos. 2005. Nanotechnology and the Environment: Applications and Implications. Oxford University Press. Kanel, S.R., R.R. Goswami, T.P. Clement, M.O. Barnett, D. Zhao. 2008. Two Dimensional Transport Characteristics of Surface Stabilized Zero-valent Iron Nanoparticles in Porous Media. Environ. Sci. Technol. 42: 896-900. Lecoanet, H., J. Bottero, and M.R. Wiesner. 2004. Laboratory Assessment of the Mobility of Nanomaterials in Porous Media. Environ. Sci. Technol. 38: 5164-5169. Lien, H.L. and W.X. Zhang. 2001. Complete Dechlorination of Chlorinated Ethenes with Nanoparticles. Colloids and Surfaces A. 191: 97-105. Li, X.Q., D.W. Elliott, and W.X. Zhang. 2006. Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. Critical Reviews in Solid State and Materials Sciences 31: 111-122 Li, F., C. Vipulanandan, K.K. Mohanty. 2003. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids Surf. A: Physicochem. Eng. Aspects. 223: 103-112. Liu, Y., S.A. Majetich, R.D. Tilton, D.S. Sholl and G.V. Lowry. 2005. TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties. Environ. Sci. Technol. 39, 1338-1345. Lee, K., C.W.F. Jr., and J.E. McCray. 1994. Hydrogeology Laboratory Manual: Lab 7. 2nd Edition. Pearson Education, Inc. Masciangioli, T. and W.X. Zhang. 2003. Environmental Nanotechnology: Potential and Pitfalls. Environ. Sci. Technol. 37: 102A-108A. McDowell-Boyer, L.M., J.R. Hunt, and N. Sitar. 1986. Particle Transport Through Porous Media. Water Resources Research 22(13): 1901-1921. Matheson, L.J. and P.G. Tratnyek. 1994. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ. Sci. Technol. 28: 2045-2053. Otterstedt, J. and D.A. Brandreth. 1998. Small Particles Technology. Plenum Press. (New York). Orth, W.S. and R.W. Gillham. 1996. Dechlorination of Trichloroethene in Aqueous Solution Using Fe0. Environ. Sci. Technol. 30: 66-71. Ponder, S.M., J.G. Darab, J. Bucher, D. Caulder, I. Craig, L. Davis, N. Edelstein, W. Lukens, H. Nitsche, L. Rao, D.K. Shuh, and T.E. Mallouk. 2001. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem. Mater. 13(2): 479 -486. Probstein, R. 1989. Physicochemical Hydrodynamics: An Introduction. 2nd Edition. Butterworth-Heinemann. (Oxford). Quinn, J., C. Geiger, C. Clausen, K. Brooks, C. Coon, S. O’hara, T. Krug, D. Major, W. Yoon, A. Gavaskar, and T. Holdsworth. 2005. Field Rosensweig, R.E. 1985. Ferrohydrodynamics. Cambridge Univ. Press. (New York). Sun, Y.P., X.Q. Li, J. Cao, W.X. Zhang, H.P. Wang. 2006. Characterization of Zero-valent Iron nanoparticles. Advances in Colloid and Interface Science 120, 47-56. Su, C., R.W. Puls. 1999. Kinetics of trichloroethene reduction by zerovalent iron and tin: pretreatment effect, apparent activation energy, and intermediate products. Environ. Sci. Technol. 33, 163-168. Saleh, N., H.-J. Kim, T. Phenrat, K. Matyjaszewski, R.D. Tilton, G.V. Lowry. 2008. Ionic Strength and Composition Affect the Mobility of Surface-Modified Fe0 Nanoparticles in Water-Saturated Sand Columns. Environ. Sci. Technol. 42: 3349-3355. Sun, Y.P., X.Q. Li, W.X. Zhang, and H.P. Wang. 2007. A method for the preparation of stable dispersion of zerovalent iron nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects 308, 60-66. Schrick, B., B.W. Hydutsky, J.L. Blough, and T.E. Mallouk. 2004. Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater. Chem. Mater. 16: 2187-2193. Stumm, W. and J.J. Morgan. 1996. Aquatic Chemistry. 3rd Edition. John Wiley & Sons, Inc.-Wiley Interscience. (New York). Tufenkji, N. and M. Elimelech. 2004. Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media. Environ. Sci. Technol. 38: 529-536. U.S. EPA Workshop on Nanotechnology for Site Remediation, Oct. 20-21, 2005. Vidic, R.D., F.G. Pohland. 1996. Technology Evaluation Report TE-96-01: Treatment Walls, Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA. Wang, C.B. and W.X. Zhang. 1997. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environ. Sci. Technol. 31(7): 2154-2156. Zheng, T., J. Zhan, J. He, C. Day, Y. Lu, G.L. McPherson, G. Piringer, V.T. John. 2008. Reactivity Characteristics of Nanoscale Zerovalent Iron-Silica Composites for Trichloroethylene Remediation. Environ. Sci. Technol. 42: 4494-4499. 行政院環保署環境檢驗所.土壤採樣及地下水採樣方法。 行政院勞工委員會,2011.GHS化學品全球調和制度/物資安全資料表。 行政院環保署,2011c毒性化物質/物資安全資料表。 裕元紡織控制計畫書,2011(睿元公司出版)。 行政院環保署公告網http://atftp.epa.gov.tw/announce/。 行政院環保署,2009a地下水污染管制標準。
摘要: 本研究是以新型態奈米零價鐵(NZVI)進行現地四氯乙烯(PCE)污染場址整治試驗,四氯乙烯(PCE)是屬於重質非水相液體(DNAPL),此一類型污染物大部分為高毒性與致癌性,一旦污染地下水體後整治難度相當高,國內早期整治方式成效並不佳。此次研究以GeoNano公司客製化生產的奈米零價鐵(NZVI)為研究對象,並實際於國內污染場址進行試驗,經由奈米零價鐵(NZVI) 注入前後,來比較監測井間的目標污染物濃度變化,以了解此一奈米零價鐵(NZVI)對於目標污染物的降解效果,且觀察其次要監測井中目標污染物的變化,由分析數據上驗證此一整治藥劑的有效影響距離以及是否會衍生副產物造成環境的二次污染。 在本模場試驗中可以證實,此一奈米零價鐵(NZVI)對於目標污染物四氯乙烯(PCE)具有明顯的降解效果,於注藥293小時後降解率大於85%,有效影響距離超過10公尺,並且在降解的過程中沒有明顯的氯乙烯等副產物之增加及監測井有阻塞現象。
This pilot-scale study was aimed to evaluate the efficacy of new stabilized nanoscale zero-valent iron (NZVI) particles in a contaminated site of groun dwater PCE that belongs to one of the dense non-aqueous phase liquids (DNAPLs). DNAPL is mostly carcinogenic or highly toxic. Once DNAPL was released into an aquifer, it could take a very long time to restore the site. Thus far, it has not been seen that a DNAPL site was successfully remediated in Taiwan. This study was carried out through the monitoring of PCE concentrations and it derivatives in wells before and after the injection of NZVI, offered by GeoNano Inc. Total 60 VOCs and Fe concentrations in groundwater were analyzed, which was then used to evaluate the influenced distance and environmental impact of NZVI. The results demonstrated that NZVI could be effective toward the degradation of targeted PCE which achieved 85% removal efficiency in 293 hours after NZVI injection. No other by-products [i.e., vinyl chloride (VC)] were obviously increased. Moreover, the influenced distance could reach more than 10 meter, and the clogging in wells was not appreciably observed.
URI: http://hdl.handle.net/11455/5811
其他識別: U0005-2008201215523100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201215523100


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。