請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5820
標題: 以電化學技術電解產製之混和性氧化劑改善養殖池水之研究
Study on Improvement of Aquaculture Water by Mixed Oxidants Generated by Electrochemical Technology
作者: 郭峪銜
Kuo, Yu-Hsien
關鍵字: 水產養殖
aquaculture
二氧化氯

電化學
chlorine dioxide
chlorine
Electrochemical
出版社: 環境工程學系所
引用: 王清松(2003),電化學氧化處理養殖海水之試驗研究,國立中興大學生物產業機電工程所碩士論文。 王榮鴻(2001),氣泡柱之水力操作參數對循環養殖用淡海水中顆粒與無機氮去除效率之影響研究,國立台灣大學農業工程學研究所碩士論文。 王慧(2008),穩定性二氧化氯改善班節對蝦育苗水環境效果的試驗,水產科學,第28卷第五期。 邱宇昕(2007),汞污染地區居民食用魚產品之汞暴露風險評估及其認知、態度、行為之研究,臺北醫學大學公共衛生學研究所碩士論文。 姜俞亦(2011),添加二氧化氯對養殖水水質改善與水質淨化之試驗研究,中興大學環境工程學系碩士論文。 洪詩涵(2010),混合性二氧化氯處理養殖水之可行性研究,中興大學環境工程學系碩士論文。 張智為(2002),電化學法處理養殖水質之基礎研究,中興大學農業機械工程學系碩士論文。 張福龍(2004),台灣地層下陷區水產養殖政策調整之研究,國立臺灣海洋大學應用經濟碩士論文。 張瀚元(2005),產業特寫-淺談水產養殖,台肥月刊,第46卷第04期。 陳依琳(2007),台灣優良水產養殖場發展策略之分析,國立臺灣海洋大學環境生物與漁業科學學系碩士論文 楊佳霖(2010),隔膜電解法產製二氧化氯之研究,中興大學環境工程學系碩士論文。 董榮彰(2005) ,電解法生產二氧化氯原型機之開發與效益評估,屏東科技大學食品科學系碩士論文。 蔡煜哲(2011),以隔膜電解法連續製備二氧化氯之可行性研究,中興大學環境工程學系碩士論文。 顏在宏(2002),循環水養殖系統之濾材物性與配置對水處理效率影響研究,國立台灣大學生物環境系統工程學系暨研究所碩士論文。 蘇偉成、劉富光(2005),台灣水產養殖的永續經營,科學發展月刊,第385期。 Anil K. S., (2006) Safe handlinf og chlorine, Journal of Chemical Health and Safety., Volume 13, Issue 2, Pages 5-11. Benefield, L. D., Judkins, J. F., & Weand B. L., (1982). Process Chemistry for Water and Wastewater Treatment. Englewood Cliffs, New Jersey. Bi X., Wang P., Jiao C., & Cao H., (2009) Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process, Journal of Hazardous Materials, Volume 168, Issues 2–3, Pages 895-900. Colt, J. E. and Armstrong, D. A., (1981). Nitrogen toxicity to crustaceans, fish and molluses, Proceeding of the Bio-Engineering Symposium for Culture, Bethesda, Aemerican Fisheries Society. Aieta E. M ., Roberts P. V and Hernandez M., (1984). Determination of Chlorine Dioxide, Chlirine, Chlorite, and Chlorare in Water, Journal of AWWA, Pages 64-69. Emerson, K., Russo, R., Lund, R. and Thurston, R., (1975). Aqueous ammonia equilibrium calculations: effects of pH and temperature, Journal of the Fisheries Research Board of Canada,Volume 32, Pages 2379-2383. Eva R., Gretchen D. O., Tomas P.J. K., James S. M., Juan L. A., & Urs V G., (2007) Oxidative elimination of cyanotoxins: Comparison of ozone, chlorine, chlorine dioxide and permanganate, Water Research, Volume 41, Issue 15, Pages 3381-3393. Gates D.J., (1998) The Chlorine Dioxide Handbook; Water Disinfection Series. AWWA Publishing, Denver, Co. Huang J., Wang L., Ren N., Liu X. L., Sun R. F., & Yang G., (1997) Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water, Water Research, Volume 31, Issue 3, Pages 455-460. Jin R. Y., Hu S. Q., Zhang Y.G.,& BoT., (2009) Concentration-dependence of the explosion characteristics of chlorine dioxide gas, Journal of Hazardous Materials, Volume 166, Issues 2–3, Pages 842-847. Kim Y., Kim M., & Song B. K., (2009) Combined treatment of fumaric acid with aqueous chlorine dioxide or UV-C irradiation to inactivate Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes inoculated on alfalfa and clover sprouts, Postharvest Biology and Technology, Volume 56, Issue 3, Pages 254-256. Kir M., Kumlu M., & Eroldoğan O.T., (2004) Effects of temperature on acute toxicity of ammonia to Penaeus semisulcatus juveniles, Aquaculture, Volume 241, Issues 1–4, Pages 479-489. Knocke, W.R. & A. Iatrou., (1993) Chlorite ion reduction by ferrous ion addition, AWWARF, Denver, CO. Lin S.H., & Wu C.L., (1996) Electrochemical removal of nitrite and ammonia for aquqculture, Water Research, Volume 30, Issue 3, Pages 715-721. Marie D., & Urs V. G., (2008) Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review, Water Research, Volume 42, Issues 1–2, Pages 13-51. Mohamed W. M. H., Sidney W. B., (1995) Thermochemistry of the Deacon Process. The Journal of Physical Chemistr , Volume 99, Issue 16, Pages 6194-6198. Onder A., Serdar S., & Burcu I., (2011) Effect of ultrasonic pretreatment on chlorine dioxide disinfection efficiency, Sonochemistry, Volume 18, Issue 2, Pages 683-688. Pillai K. C., Kwon T. O., Park B. B., & Moon I. S., (2009) Studies on process parameters for chlorine dioxide production using IrO2 anode in an un-divided electrochemical cell, Journal of Hazardous Materials, Volume 164, Issues 2–3, Pages 812-819. Poxton M. G. & Allouse S. B., (1982) Water quality criteria for fisheries, Aquacultural Engineering, Volume 1, Issue 3, Pages 153-191. Ratnayaka D. D., Brandt M. J., K. & Johnson M., (2009) Disinfection of Water, Water Supply (Sixth Edition), Pages 425-461. Richa V., Richard H. L., & Mark T. M., (2010) Comparison of inactivation of Listeria monocytogenes within a biofilm matrix using chlorine dioxide gas, aqueous chlorine dioxide and sodium hypochlorite treatments. Food Microbiology, Volume 27, Issue 8, Pages 979-984. Richard H., Kenneth C., & Dean G., (2001) The impact of ferrous ion reduction of chlorite ipn on drinking water water process performance, Water Research, Volume 35, Issue 18, Pages 4464-4473. Rodrigues R. V., Schwarz M. H., Delbos B. C., Sampaio L. A., (2007) Acute toxicity and sublethal effects of ammonia and nitrite for juvenile cobia Rachycentron canadum, Aquaculture, Volume 271, Issues 1–4, Pages 553-557. Russo R. C., (1985). Ammonia, nitrite, and nitrate. In Fundamentals of Aquatic Toxicology(G. M. Rand and S. R. Petrocelli). Hemisphere, New York. Pages 445-471. Sabrina S., & Francesca G., (2010) Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine, Water Research, Volume 44, Issue 19, Pages 5653-5659. Sergio N., Mercedes A., & Hermenegildo G., (2008) Reaction of chlorine dioxide with emergent water pollutants: Product study of the reaction of three b-lactam antibiotics with ClO2, Water Research, Volume 42, Issues 8–9, Pages 1935-1942. Sichel C., Garcia C., & Andre K, (2011) Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants, Water Research, Volume 45, Issue 19, Pages 6371-6380. Stanbury D.M., Martinez R., Tseng E., & Miller C.E., (1998) Slow electron transfer between main-gorup species: Oxidation of nitrite by chlorine dioxide, contribution from the Department of Chemistry, Volume 27, Issue 23, Pages 4277-4280. Trinetta V., Morgan M.T., & Linton R.H., (2010) Use of high-concentration-short-time chlorine dioxide gas treatments for the inactivation of Salmonella enterica spp. inoculated onto Roma tomatoes, Food Microbiology, Volume 27, Issue 8, Pages 1009-1015. Vivian C.H. W., & Amanda R., (2010) A simple instrument-free gaseous chlorine dioxide method for microbial decontamination of potatoes during storage, Food Microbiology, Volume 27, Issue 1, Pages 179-184. Wang D., Zhang D., Chen W., Yu S., & Shi X., (2010) Retention of Vibrio parahaemolyticus in oyster tissues after chlorine dioxide treatment, International Journal of Food Microbiology, Volume 137, Issue 1, 31, Pages 76-80.
摘要: 水產養殖業常以高密度養殖方式以達較高之經濟效益,而該法卻容易造成養殖水體產生氨氮及亞硝酸鹽等有毒物質之惡化情形。一般傳統養殖場常以抽取地下水換水之方式用以控制水質,但大量排放污染性水體除增加水體負荷外,抽取地下水體作為換水來源也可能導致該地域地層下陷等環境衝擊,因此具有完善水處理程序以增加循環水回收再利用之研究確有其必要性。 本研究探討於陽極電解槽中添加不同比例之氯化納以及亞氯酸鈉後其組成成分,同時調控模組槽體初始產製溫度兩種操作參數下,對於槽體內產製之混合性氧化劑其產出變化情形,同時利用混合性氧化劑產出溶液以不同配比之比例下添加於模擬實場養殖水體中進行試驗,評估其整體水質變化情形以及其影響水中目標污染物之處理效能。因此本試驗以不同配比之混合性氧化劑處理人工配置氨氮、亞硝酸鹽兩目標污染物溶液並監測其彼此轉化平衡情形,另於實場水體中添加特定污染物進行試驗以做為空白與實場水體間比較。 研究結果發現隨著槽體初始溫度提高,陽極槽體中所添加之氯化鈉以及亞氯酸鈉電解液濃度逐漸提升之後,混和性氧化劑產出之濃度也隨之增加,以12V提供穩定電壓、氯化鈉與亞氯酸鈉比例分別為 2%、6% 並將電解槽初始溫度調控至40℃進行電解產製時,可分別於不同時間下產出濃度約 900 mg/L 之二氧化氯以及約 400 mg/L 之氯,另一項研究以混和性氧化劑添加於水體中進行反應,發現當混和性氧化劑以二氧化氯 : 氯以三種比例 2:1、1:1、1:2 添加下,無論於模擬水體中或是實場水體中其去除污染物情形皆以添加比例為 1:2 下較為明顯,同時研究發現混和性氧化劑可具一定程度降解水體中目標污染物。
Aquacultural activities often use high-density cultivating methods to achieve higher economic efficiency, the method is likely to cause deterioration of aquaculture water to produce toxic substances such as ammonia nitrogen and nitrite. Conventional fresh water bonds often used to control the extraction of groundwater water changes the water quality, but the massive emissions of polluting water bodies in addition to the increased water load, extraction of groundwater body as changing the water source may also lead to the environmental impact of the regional land subsidence, and therefore improve the water treatment program to increase the circulating water recycling and reuse research is indeed necessary In this study, different proportions of sodium chloride and sodium chlorite added to the anodes after its composition, under the regulation module tank the initial production of temperature two operating parameters for a slot in vivo production of mixed oxidants produce changes in circumstances, Lee mixed oxidant output solution added to the different ratio of the proportion of breeding in water to simulate real test to assess the overall changes in water quality situation and its impact processing performance of the target pollutants in the water. This experiment with different proportions of mixed oxidants to deal with manual configuration ammonia, nitrite target pollutant solution and monitor each other transformed into a balanced situation, and the other in the real field in water, add the specific contaminants tested as blank and Implementation between the field water bodies The results showed that the anode tank added sodium chloride and sodium chlorate electrolyte concentration is gradually enhanced with the initial tank temperature rises, the concentration of mixed oxidant output also increased to provide a stable 12V voltage, the proportion of sodium chloride and sodium chlorite were 2%, 6% and the electrolyzer initial temperature control to 40 � C for electrolytic production at different times of output concentration of approximately 900 mg / L, chlorine dioxide, and of about 400 mg / L of chlorine, the other a study of miscibility with oxidant added in the water column response, found that when mixed oxidant to chlorine dioxide: chlorine three ratios 2:1,1:1,1:2 adding the next, regardless of the simulation in water or the real field in water to remove pollutants situation is more obvious to begin with the proportion of added 1:2, found mixed oxidant with a certain degree of degradation of the target pollutants .
URI: http://hdl.handle.net/11455/5820
其他識別: U0005-1308201211594000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308201211594000
顯示於類別:環境工程學系所

文件中的檔案:
檔案 描述 大小格式 
nchu-101-7099063027-1.pdf1.59 MBAdobe PDF檢視/開啟


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。