Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5831
標題: 南臺灣排放量差異對空氣品質模式CAMx模擬影響之研究
A Study on the Effect of Different Emission Profiles on Air Quality Using CAMx in Southern Taiwan
作者: 詹淳惠
Chan, Chun-Hui
關鍵字: CAMx
CAMx
土地利用型態
臭氧
TEDs
排放量
land-use
ozone
TEDs
emission
出版社: 環境工程學系所
引用: 1. Chen,K.S., Y.T. Ho, C.H. Lai,Y.M. Chou,“Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kaohsiung, Taiwan. ” Atmospheric Environment, Vol.37, pp.1181-1823(2003). 2. Chatani, S., T. Morikawa, S. Nakatsuka, S. Matsunaga, H. Minoura,“Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan. ”Atmospheric Environment, Vol.45, pp.1383-1393(2011). 3. Coll, I., P. Guido, L. Fanny, “Chapter 4.2 Application and sensitivity analysis of CAMx and CHIMERE air quality models in a coastal area” Developments in Environmental Science, Volume 6, ISSN:1474-8177/DOI:10.1016/S1474-8177 (2007). 4. ENVIRON International Cooperation, “ User’s Guide for Comprehensive air quality model with extensions(CAMx) Version 5.20. ”(2010). 5. EPA, “ User’s Guide for the Urban Airshed Model-Volume I; User’s Manual for UAM(CB-IV). ”U.S. Environmental Protection Agency, Research Triangle Park, NC, EPA-450/4-90-007a(1990). 6. Grant R H.,Wong K. L.,”Ozone profile over a suburban neighbornhood”,Atmopheric Environment, Vol.33,pp.51-63 (1999) 7. Godowitch, J.M., A.B. Gilliland, R.R. Draxler, S.T. Rao, “Modeling assessment of point source NOx emission reductions on ozone air quality in the eastern United States.” Atmospheric Environment, Vol.42, pp.87-100(2008). 8. Kang, D., V.P. Aneja, R. Mathur, J.D. Ray, “Observed and modeled VOC chemistry under high VOC/NOx conditions in the Southeast United States national parks.” Atmospheric Environment, Vol.38, pp.4969-4974(2004). 9. Lei, W.,B.D. Foy,M. Zavala,R. Volkamer,L.T. Molina, “Characterizing ozone production in the Mexico City Metropolitan Area: a case study using a chemical transport model”Atmospheric Chemistry and Physics Discussions,Vol.6, (2006) 10. Luecken, D.J., S. Phillips, G. Sarwar, C. Jang, “Effects of using the CB05 vs. SAPRC99 vs. CB4 chemical mechanism on model predictions: Ozone and gas-phase photochemical precursor concentrations.” Atmospheric Environment, Vol.42, pp.5805-5820(2008). 11. Liu, X.H., Y. Zhang, K.M. Olsen, W.X. Wang, B.A. Do, G.M. Bridgers, “Responses of future air quality to emission controls over North Carolina, PartΙ: Mondel evaluation for current-year simulations.” Atmospheric Environment, Vol.44, pp.2443-2456(2010). 12. Peng, Y.P., K.S. Chen, C.H. Lai, P.J. Lu, J.H. Kao, “Concentrations of H2O2 and HNO3 and O3-VOC-NOx sensitivity in ambient air in southern Taiwan.” Atmospheric Environment, Vol.40, pp.6741-6751(2006). 13. Tsai, J.H.,Y.C. Hsu, J.Y. Yang,“The relationship between volatile organic profiles and emission sources in ozone episode region-a case study in Southern Taiwan.” Science of the Total Environment, Vol.328, pp. 131-142(2004). 14. Tesche, T.W., R. Morris, G. Tonnesen, D.M. Nally, J. Boylan, P. Brewer, “CMAQ/CAMx annual 2002 performance evaluation over the eastern US.” Atmospheric Environment, Vol.40, pp.4906-4919(2006). 15. Titov, M., A. P. Sturman, P. Zawar-Reza, “Application of MM5 and CAMx4 to local scale dispersion of particulate matter for the city of Christchurch, New Zealand.” Atmospheric Environment, Vol. 41, pp. 327–338 (2007). 16. Wang, X.S., J.L. Li, Y.H. Zhang, S. D. Xie, X.T. Tang, “Ozone source attribution during a severe photochemical smog episode in Beijing, China.”Science in China Series B: Chemistry, Vol. 52, pp. 1270-1280(2009). 17. Wang, Q., Z. Han, T. Wang, R. Zhang,“Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China.”Science of the Total Environment, Vol.395, pp. 41-49(2008). 18. Yarwood, G., S. Rao, M. Yocke, and G.Z. Whitten,“Updates to the Carbon Bond chemical mechanism: CB05. ”Final Report prepared for US EPA(2005). 19. 王雪松、李金龍,人為源排放VOC對北京地區臭氧生成的貢獻,China Environment Science,Vol.22(6):501-505(2002)。 20. 陳建鴻、李宗宜、張艮輝,臭氧(O3)污染控制方向之本土化模式解析,2001年第19屆空氣污染控制技術研討,國立雲林科技大學,斗六(2003)。 21. 陳建鴻,跨空品區空氣污染之相互影響模擬與分析,博士班,國立雲林科技大學環境與安全衛生工程學系,雲林(2004)。 22. 張能復,南高屏地區空氣污染總量管制規劃─E1子計畫反應性軌跡模式空氣污染事件之應用與解析,EPA-88-FA21-03-0012,(1999)。 23. 黃鍾偉,空氣品質模式CAMx於中部空品區臭氧事件日之模擬評估分析,碩士論文,國立中興大學環境工程學系,台中(2010)。 24. 王建鈞,台灣地區空氣污染物排放處理系統之建立研究─以SMOKE為基礎,碩士論文,國立雲林科技大學環境與安全衛生工程學系,雲林(2005)。 25. 行政院環保署,空氣品質模式支援中心。 26. 行政院環保署,台灣空氣污染排放清冊資料庫,TEDs 7.0 版,(2010)。 27. 陳忠義,中部空品區高臭氧事件之模擬分析,碩士論文,國立中興大學環境工程學系,台中(1998)。 28. 蔡德明,應用Models-3CMAQ以PC cluster 研究高速公路網與電廠對南高屏地區臭氧濃度之影響,博士論文,國立成功大學環境工程學系,台南(2006)。 29. 陳聖博,以光化學網格模式評估不同季節臭氧事件日之排放源與風場輸入資料差異,碩士論文,國立中興大學環境工程學系,台中(2006)。 30. 陳幸芬,台南縣臭氧敏感性物種之調查研究,碩士論文,國立成功大學環境工程學系,台南(2002)。 31. 賴春甫,空氣污染物減量對雲嘉南地區空氣品質之影響,碩士論文,國立中興大學環境工程學系,台中(2011)。 32. 廖志嘉,境外長程傳輸對台灣臭氧影響機制之研究,碩士論文,國立雲林科技大學環境與安全衛生工程學系,雲林(2012)。 33. 許峻銘,高高屏地區高臭氧污染來源解析及成因探討,碩士論文,國立中興大學環境工程學系,台中(2012)。 34. 許志禎,台灣土地利用形態對於局部環流與降雨模擬之影響,碩士論文,國立中央大學大氣科學系暨大氣物理研究所,桃園(2008) 35. 曹嘉宏,台灣土地利用型態對MM5模擬局部環流之影響,碩士論文,國立中央大學大氣科學系暨大氣物理研究所,桃園(2007)
摘要: 空氣污染物在環境中會受到氣象因素而傳輸或污染物彼此所發生的化學反應,造成污染物的累積、擴散等作用,因此需要空氣品質模式來模擬污染源所排出的空氣污染物在大氣中的流動,進而研擬出污染源的管制策略,以達到空氣品質改善之目的。 本研究利用CAMx模式以TEDs7.0進行模擬,模擬O3以及NO2濃度的結果並不理想,因此對於可能因素光化機制及排放量的合理性進行檢討,以排放量為本研究討論之重點,針對點源及線源為主要修正對象。 根據研究顯示對線源以及點源修正排放量,對於南台灣地區之汙染排放濃度較符合現實環境,由基本模擬改變現源及點源排放量,結果台南地區新營測站,O3之OB由-37%變至-27%,GE由41%降至31%,NO2之OB由145%降至89%,GE由152%降至92%,林園測站之O3之OB由-67%變至-62%,GE由68%降至64%,NO2之OB及GE由556%降至469%,屏東測站O3之OB由-24%變至-11%,GE由42%降至34%,NO2之OB由116%降至49%,GE由138%降至76%。 本研究也以MM5模擬利用不同土地利用型態來進行模擬,模擬的結果顯示不論USGS和CTCI的模擬風場以及溫度場都和實測值有高度的相關。USGS和CTCI在皮爾森相關係數相差比為U風3.25%,V風-0.37%,溫度0.03%,在一致性指標相差比為U風0.76%,V風-1.32%,溫度-5.11%,推估土地利用型態並不是影響風速模擬不準確的主要原因。
Due to meteorological condition, air pollutants will accumulate or interact with each other. As a result, air quality model is required to simulate the flow of air pollutants from emitting sources in the atmosphere. In this way, improvement of air quality can be achieved by control strategies. This study utilizes CAMx model to conduct basic simulation to simulate ozone, nitrogen dioxide and other gas species. The simulation results showed unsatisfactory results of O3 and NO2 concentration. After evaluating potential factors such as photochemical mechanism and emission, this research focuses on different emission profile of point sources and line sources. It is found that modified emission profile of point sources and line sources will give better simulation results in southern Taiwan. For air quality monitoring station in Hsinyin Tainan, OB and GE of O3 drops from -37% to -27%, 41% to 31% respectively; OB and GE of NO2 drops from 145% to 89%, 152% to 92% respectively. In Linyuan station, OB and GE of O3 drops from -67% to -62%, 68% to 64% respectively; OB and GE of NO2 both drops from 556% to 469%. In Pingtung station, OB and GE of O3 drops from -24% to -11%, 42% to 34% respectively; OB and GE of NO2 drops from 116% to 49%, 138% to 76% respectively. This research also employs MM5 to study the effect of different land uses. Simulation results are highly correlated to measured wind and temperature regardless of using USGS or CTCI. Pearson correlation coefficient of U Wind is 3.25%, V wind -0.37%, temperature 0.03%. Index of agreement between the U wind ratio is 0.76%, V wind -1.32%, temperature -5.11%. This research suggests land use is not the main cause of inaccuracy on wind filed simulation.
URI: http://hdl.handle.net/11455/5831
其他識別: U0005-2201201317314000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2201201317314000
Appears in Collections:環境工程學系所

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.