Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5843
標題: 垃圾焚化飛灰重金屬無害化處理技術之研發
Entrapment on the Heavy Metals of Municipal Solid Waste Incinerator Fly Ash for Electro-oxidation Treatment
作者: 楊仁泊
Yang, Renbo
關鍵字: 焚化飛灰
MSWI fly ash
電動力
電沉積
電解氧化誘捕
電解混凝
Friedel’s salt
Electrokinetic
Electrodeposition
Electro-oxidation entrapment
Electrocoagulation
Friedel’s salt
出版社: 環境工程學系所
引用: 參考文獻 一、 中文部分 王哲煒,「比較化學混凝、電化學混凝及Fenton法處理乳膠造紙廢水之研究」,碩士論文,淡江大學水資源及環境工程學系,2009。 王薪嘉,「MSWI飛灰中重金屬經電沉積法回收後資源化之研究」,碩士論文,國立中興大學環境工程學系,台中市,2008。 白育綸,「電沉積鐵族合金之組成控制、表面奈米化及應用」,博士論文,國立中正大學化學工程研究所,嘉義,2003。 古彥菁、余榮山、鈴木義男,”焚化飛灰重金屬捕集無害化技術之探討”,第15屆廢棄物處理技術研討會論文集,2000。 周政賢,「利用電動力法處理MSWI飛灰重金屬之研究」,碩士論文,國立中興大學環境工程研究所,台中市,2007。 周常華,「焚化底渣/氟化鈣污泥之共同熔融結晶化熔渣之特性及其資材化研究」,碩士論文,國立台灣大學環境工程研究所,台北,2007。 林奇瑩,「利用電沉積法處理經酸洗後MSWI飛灰回收液之重金屬效能研究」,碩士論文,國立中興大學環境工程學系,台中市,2009。 林世強,“以垃圾焚化灰為原料之環保水泥生產技術與物性探討”,第17屆廢棄物處理技術研討會論文集,2002。 林健三、林健榮編著,「固體廢棄物處理」,高立圖書有限公司出版,2004,二版。 林凱隆,「都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究」,博士論文,國立中央大學環境工程研究所,桃園,2002。 房士祺,「電混凝處理方法對廢水處理效率提昇之研究」,碩士論文,朝陽科技大學環境工程與管理系,台中,2004。 黃建宏、章日行,“探討電混凝處理含重金屬Cu、Ni 及Cr 廢水之去除機制”,中華民國環境工程學會廢水處理技術研討會論文,2009。 黃進益譯,「電化學的原理與應用」,高立圖書有限公司,初版,1998。 翁誌煌,「受有機物污染廠址之物化整治技術研究:電滲透法整治有機污染 廠址之研究(第二年)」,行政院國科會專題研究計畫成果報告,1998。 孫世勤,“垃圾焚化廠灰渣處理與再利用方式評估”,網路資料,中興工程顧問,2004。 郭韋廷,「電化學處理MSWI飛灰無害化之研究」,碩士論文,國立中興大學環境工程學系,台中市,2010。 郭益銘,「焚化灰渣玻璃化之評估研究」,博士論文,國立成功大學環境工程學系,台南,2004。 陳毅明,「利用垃圾焚化底渣替代瀝青混凝土細粒料之研究」,碩士論文,淡江大學水資源及環境工程學系,台北縣,2004。 張正源,「焚化灰渣物理化學特性之探討與研究」,博士論文,國立清華大學原子科學研究所環境科學組,新竹市,2006。 張俊鴻,「以EDTA、藻酸鈉對砷及鉻污染土壤萃取效率之研究」,碩士在職專班論文,國立中央大學環境工程研究所,中壢,2006。 斯克誠、駱尚廉,“土壤與地下水污染整治政策與其實務”,土木水利,第26卷,第4期,第50-58頁,2000。 葉宇珊,「水洗垃圾焚化爐飛灰可行性之研究」,碩士論文,國立中央大學環境工程研究所,桃園縣,2012。 楊仁泊、廖文彬,“國內垃圾焚化飛灰再生之可行性評估”,2006清潔生產暨永續發展研討會論文集, 經濟部工業局編印, 民國95年11月, A22-1~10。 廖文彬、楊仁泊、周政賢,“垃圾焚化飛灰重金屬總量分析之探討”,環境分析化學研討會,中興大學,2006。 廖明村、李宜欣、孫世勤,”垃圾焚化飛灰處理與再利用之探討”,化工技術,第14卷第2期,167-181,2006年2月。 劉祥兆、胡慶祥、曲可喬、洪瑞敏、盧至人,“淺談污染場址有機污染物之生物有效性”,社團法人台灣土壤及地下水環境保護協會簡訊,Vol.38, 2011.1.5,15-31。 謝慶弘,「以水洗酸溶處理垃圾焚化飛灰可行性之研究」,碩士論文,中興大學環境工程學系,台中市,2003。 鐘元章,「垃圾焚化飛灰以磷酸無害化處理之研究」,碩士論文,淡江大學水資源及環境工程學系,台北縣,2002。 環保署,“行政院環境保護署事業廢棄物再利用管理辦法”,中華民國101年1月19日,環署廢字第1010006041號。 環保署,“一般廢棄物-垃圾焚化廠焚化底渣再利用管理方式”,中華民國101年10月17日,環署廢字第1010094463A號修正。 環保署,「垃圾焚化灰渣再利用推動計畫」獎補助款執行要點,中華民國99 年6月1日,環署廢字第0990049699 號。 發明專利申請案號:99125811,創作人:廖文彬;申請人:楊仁泊,“大型垃圾焚化廠焚化爐飛灰處理方法及其產物”,2010。 環保署環境檢驗所網站,2012:http://www.niea.gov.tw/。 環保署事業廢棄物申報及管理系統網站: http://waste.epa.gov.tw/prog/IndexFrame.asp。 環保署環保法規網站,2012:http://w3.epa.gov.tw/epalaw/index.aspx。 環保署事業廢棄物申報及管理系統網站,2012: http://waste.epa.gov.tw/prog/IndexFrame.asp。 環保署環境督察總隊台北辦公室網站,2012: http://ivy4.epa.gov.tw/swims/swims_net/index.aspx。 經濟部標準檢驗局國家標準(CNS)檢索系統網站,2012: http://www.cnsonline.com.tw/。 二、 西文部分 Abbas, Z., Moghaddam, A.P., Steenari, B.M., 2003. Release of salts from municipal solid waste combustion residues. Waste Manage. 23, 291-305. Acar, Y.B., Alshawabkeh, A.N., 1993. Principles of electrokinetic remediation. Environ. Sci. Technol. 27, 2638-2647. Acar, Y.B., Gale, R.J., Alshawabkeh, A.N., Marks, R.E., Puppala, S., Bricka, M., Parker, R., 1995. Electrokinetic remediation: basics and technology status. J. Hazard. Mater. 40, 117-137. Acar, Y.B., Alshawabkeh, A.N., Gale, R.J., 1993. Fundamentals aspects of extracting species from soils by electrokinetics. Waste Manage. 12, 1410-1421. Acar, Y.B., Lee, H., Gale, R.J., 1992. Phenol removal from kaolinite by electrokinetics. J. Geotech. Eng. 118, 1837-1852. Allal, K., M., Dolignier, J., C., Martin, G., 1998. Mécanisme de réaction de l''hydroxyde de calcium avec de l''acide chlorhydrique gazeux. Oil & Gas Sci. and Technol. - Rev. IFP 53, 871-880. Alonso, A.R., Lapidus, G.T., González, I., 2007. A strategy to determine the potential interval for selective silver electrodeposition from ammoniacal thiosulfate solutions. Hydrometallurgy 85, 144-153. Alorro, R.D., Mitani, S., Hiroyoshi, N., Ito, M., Tsunekawa, M., 2008. Recovery of heavy metals from MSW molten fly ash by carrier-in-pulp method: Fe powder as carrier. Miner. Eng. 21, 1094-101. Altin, A., Degirmenci, M., 2005. Lead (II) removal from natural soils by enhanced electrokinetic remediation. Sci. Total Environ. 337, 1-10. Amrate, S., Akretche, D.E., 2005. Modeling EDTA enhanced electrokinetic remediation of lead contaminated soils. Chemosphere 60, 1376-1383. Andersen, M.D., Jakobsen, H.J., Skibsted, J., 2002. Characterization of the α-β phase transition in Friedels salt (Ca2Al(OH)6Cl•2H2O) by variable -temperature 27Al MAS NMR spectroscopy. J. Phys. Chem. A 106, 6676-6682. Anglada, Á., Urtiaga, A., Ortiz, I., 2009. Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J. Chem. Technol. Biotechnol. 84, 1747-1755. Ann, K.Y., Song, H.W., 2007. Chloride threshold level for corrosion of steel in concrete. Corros. Sci. 49, 4113-4133. Arvelakis, S., Frandsen, F.J., 2005. Study on analysis and characterization methods for ash material from incineration plants. Fuel 84, 1725-1738. Astrup, T., Mosbæk, H., Christensen, T.H., 2006. Assessment of long-term leaching from waste incineration air-pollution-control residues. Waste Manage. 26, 803-814. ASTM International website: http://www.astm.org/. Standard test methods for loss on ignition (LOI) of solid combustion residues. Current edition approved Oct. 15, 2008. DOI: 10.1520/D7348-08. Australia, S.L., 2001. Electrokinetic remediation. Part. Sci. Technol. 19, 219-228. Baraud, F., Tellier, S., Astruc, M., 1999. Temperature effect on ionic transport during soil electrokinetic treatment at constant pH. J. Hazard. Mater. 64, 263-281. Baruah, N.K., Kotoky, P., Bhattacharyya, K.G., Borah, G.C., 1996. Metal speciation in Jhanji river sediments. Sci. Total Environ. 193, 1-12. Bazrafshan, E., Mahvi, A.H., Nasseri, S., Mesdaghinia, A.R., Vaezi, F., Nazmara S., 2006. Removal of cadmium from industrial effluents by elecrtocoagulation process using iron electrodes. Iran. J. Environ. Health Sci. Eng. 3, 261-266. Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J.L., Harris, E., Robinson, B., Sizmur, T., 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 159, 3269-3282. Birnin-Yauri, U.A., Glasser, F.P., 1998. Friedel''s salt, Ca2Al(OH)6(Cl, OH)•2H2O: its solid solutions and their role in chloride binding. Cem. Concr. Res. 28, 1713-1723. Brenner, A., 1963. Electrodepostion of alloys principles and practice. Acad. Press, Vol. 1, New York. Canizares, P., Jimenez, C., Martinez, F., Rodrigo, M. A., Saez, C., 2009. The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters. J. Hazard. Mater. 163, 158-164. Carvalho, R.H., Lemos, F., Lemos, M., Cabral, J.M.S., Ribeiro, F.R., 2007. Electro-oxidation of phenol on a new type of zeolite/graphite biocomposite electrode with horseradish peroxidase. J. Mol. Catal. A-Chem. 278, 47-52. Cauwenberghe, L. V., 1997. Electrokinetics. Ground-Water Rem. Technol. Anal. Center. Chang, M.B., Huang, C.K., 2002. Characteristics of chlorine and carbon flow in two municipal waste incinerators in Taiwan. J. Environ. Eng.-ASCE 128, 1182-1187. Chang, M.B., Huang, C.K., Wu, H.T., Lin, J.J., Chang, S.H., 2000. Characteristics of heavy metals on particles with different sizes from municipal solid waste incineration. J. Hazard. Mater. 79, 229-239. Chen, G., 2004. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11-41. Chen, W.S., Chang, F.C., Shen, Y.H., Tsai, M.S., Ko, C.H., 2012. Removal of chloride from MSWI fly ash. J. Hazard. Mater. 237–238, 116-120. Cheung, K.C., Wong, W.L., Ma, D.L., Lai, T.S., Wong, K.Y., 2007. Transition metal complexes as electrocatalysts—development and applications in electro-oxidation reactions. Coord. Chem. Rev. 251, 2367-2385. Chiang, K.Y., Hu, Y.H., 2010. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Manage. 30, 831-838. Chiang, K.Y., Tsai, C.C., Wang, K.S., 2009. Comparison of leaching characteristics of heavy metals in APC residue from an MSW incinerator using various extraction methods. Waste Manage. 29, 277-284. Chimenos, J.M., Fernández, A.I., Cervantes, A., Miralles, L., Fernández, M.A., Espiell, F., 2005. Optimizing the APC residue washing process to minimize the release of chloride and heavy metals. Waste Manage. 25, 686-693. Ciba, J., Zolotajkin, M., Kluczka, J., Loska, K., Cebula, J., 2003. Comparison of methods for leaching heavy metals from composts. Waste Manage. 23, 897-905. Cinquepalmi, M.A., Mangialardi, T., Panei, L., Paolini, A.E., Piga, L., 2008. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: physico-mechanical and leaching characteristics. J. Hazard. Mater. 151, 585-593. Colangelo, F., Cioffi, R., Montagnaro, F., Santoro, L., 2012. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material. Waste Manage. 32, 1179-1185. Collivignarelli, C., Sorlini, S., 2002. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures. Waste Manage. 22, 909-912. Dai, Y., Qian, G., Cao, Y., Chi, Y., Xu, Y., Zhou, J., Liu, Q., Xu, Z.P., Qiao, S., 2009. Effective removal and fixation of Cr(VI) from aqueous solution with Friedel''s salt. J. Hazard. Mater. 170, 1086-1092. De Boom, A., Degrez, M., Hubaux, P., Lucion, C., 2011. MSWI boiler fly ashes: magnetic separation for material recovery. Waste Manage. 31, 1505-1513. De Casa, G., Mangialardi, T., Paolini, A.E., Piga, L., 2007. Physical- mechanical and environmental properties of sintered municipal incinerator fly ash. Waste Manage. 27, 238-247. Dell’Orso, M., Mangialardi, T., Paolini, A.E., Piga, L., 2012. Evaluation of the leachability of heavy metals from cement-based materials. J. Hazard. Mater. 227-228, 1-8. Deng, Y., Englehardt, J.D., 2007. Electrochemical oxidation for landfill leachate treatment. Waste Manage. 27, 380-388. Doulakas, L., Novy, K., Stucki, S., Comninellis, C., 2000. Recovery of Cu, Pb, Cd and Zn from synthetic mixture by selective electrodeposition in chloride solution. Electrochim. Acta 46, 349-356. Dell’Anno, A., Mei, M.L., Ianni, C., Danovaro, R., 2003. Impact of bioavailable heavy metals on bacterial activities in coastal marine sediments. World J. Microbiol. Biotechnol. 19, 93–100. Ecke, H., Svensson, M., 2008. Mobility of organic carbon from incineration residues. Waste Manage. 28, 1301-1309. Eighmy, T.T., Crannell, B.S., Butler, L.G., Cartledge, F.K., Emery, E.F., Oblas, D., Krzanowski, J.E., Eusden, J.D., Shaw, E.L., Francis, C.A., 1997. Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environ. Sci. Technol. 31, 3330-3338. Eighmy, T.T., Eusden, J.D., Krzanowski, J.E., Domingo, D.S., Staempfli, D., Martin, J.R., Erickson, P.M., 1995. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash. Environ. Sci. Technol. 29, 629-646. Elliott, H.A., Liberti, M.R., Huang, C.P., 1986. Competitive adsorption of heavy metals by soil. J. Environ. Qual. 15, 214-219. Emamjomeh, M.M., Sivakumar, M., 2009. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J. Environ. Manage. 90, 1663-1679. Expósito, E., González-García, J., Bonete, P., Montiel, V., Aldaz, A., 2000. Lead electrowinning in a fluoborate medium. Use of hydrogen diffusion anodes. J. Power Sources 87, 137-143. Expósito, E., Iniesta, J., González-García, J., Montiel, V., Aldaz, A., 2001. Lead electrowinning in an acid chloride medium. J. Power Sources 92, 260-266. Freitas, M.B.J.G., de Pietre, M.K., 2005. Deposit morphology of the zinc recovery by electrodeposition from the spent Zn-MnO2 batteries. J. Power Sources 143, 270-274. Ferreira, C., Jensen, P., Ottosen, L., Ribeiro, A., 2005. Removal of selected heavy metals from MSW fly ash by the electrodialytic process. Eng. Geol. 77, 339-347. Ferreira, C., Ribeiro, A., Ottosen, L., 2003. Possible applications for municipal solid waste fly ash. J. Hazard. Mater. 96, 201-216. Gao, X.B., Wang, W., Ye, T.M., Wang, F., Lan, Y.X., 2008. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate. J. Environ. Manage. 88, 293-299. Gerhardt, A., 1993. Review of impact of heavy metals on stream invertebrates with special emphasis on acid conditions. Water Air soil pollut. 17, 23-55. Gemma, R., 1997. Extraction procedure for the determination of heavy metal in contaminated soil and sediment. Talanta 46, 449-455. Ghernaout, D., Naceur, M.W., Aouabed, A., 2011. On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment. Desalin. 270, 9-22. Giller, K.E., Witter, E., McGrath, S.P., 2009. Heavy metals and soil microbes. Soil Biol. Biochem. 41, 2031-2037. Glass, G.K., Buenfeld, N.R., 2000. The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corros. Sci. 42, 329-344. Guillaume, P., Leclerc, N., Lapicque, F., Boulanger, C., 2008. Electroleaching and electrodeposition of zinc in a single-cell process for the treatment of solid waste. J. Hazard. Mater. 152, 85-92. Hamed, J.T., Bhadra, A., 1997. Influence of current density and pH on electrokinetics. J. Hazard. Mater. 55, 279-294. Hammy, F., Mercier, G., Blais, J.F., 2005. Removal of lead in APCR leachates from municipal solid waste incinerator using peat moss in a batch counter-current sorption process. Hydrometallurgy 80, 232-240. Handley-Sidhu, S., Keith-Roach, M.J., Lloyd, J.R., Vaughan, D.J., 2010. A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium. Sci. Total Environ. 408, 5690-5700. Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater. 169, 1-15. Herck, P.V., Bruggen, B.V., Vogels, G., Vandecasteele, C., 2000. Application of computer modeling to predict the leaching behavior of heavy metals from MSWI fly ash and comparison with a sequential extraction method. Waste Manage. 20, 203-210. Hettiarachchi, G.M., Pierzynski, G.M., 2004. Soil lead bioavailability and in situ remediation of lead-contaminated soils: a review. Environ. Prog. 23, 78-93. Hsiao, M.C., Wang, H.P., Wei, Y.L., Chang, J.E., Jou, C.J., 2002. Speciation of copper in the incineration fly ash of a municipal solid waste. J. Hazard. Mater. 91, 301-307. Huang, S.J., Chang, C.Y., Mui, D.T., Chang, F.C., Lee, M.Y., Wang, C.F., 2007. Sequential extraction for evaluating the leaching behavior of selected elements in municipal solid waste incineration fly ash. J. Hazard. Mater. 149, 180-188. Huang, W.J., Chu, S.C., 2003. A study on the cementlike properties of municipal waste incineration ashes. Cem. Concr. Res. 33, 1795-1799. Ik Chung, H., Kamon, M., 2005. Ultrasonically enhanced electrokinetic remediation for removal of Pb and phenanthrene in contaminated soils. Eng. Geol. 77, 233-242. Irvine, K., Perrelli, M., Ngoen-klan, R., Droppo, I., 2009. Metal levels in street sediment from an industrial city: spatial trends, chemical fractionation, and management implications. J. Soils Sediments 9, 328-341. Issabayeva, G., Aroua, M.K., Sulaiman, N.M., 2006. Electrodeposition of copper and lead on palm shell activated carbon in a flow-through electrolytic cell. Desalin. 194, 192-201. Iyer, R., 2001. Electrokinetic remediation. Part. Sci. Technol.: An Int. J. 19, 219-228. Jakob, A., Stucki, S., Kuhn, P., 1995. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ. Sci. Technol. 29, 2429-2436. Jakob, A. and Stucki, S., 1997. Complete heavy metal removal from fly ash by heat treatment: control mechanisms and parameters. In: Congress Proceedings R’97-Recovery, Recycling, Re-integration. III, 51-55. Jia, X., Larson, D., Slack, D., Walworth, J., 2005. Electrokinetic control of nitrate movement in soil. Eng. Geol. 77, 273-283. Jiang, J.Q., Graham, N., André, C., Kelsall, G.H., Brandon, N., 2002. Laboratory study of electro-coagulation-flotation for water treatment. Water Res. 36, 4064-4078. Jiao, W., Chen, W., Chang, A.C., Page, A.L., 2012. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environ. Pollut. 168, 44-53. Jong, T., Parry, D.L., 2004. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis. J. Environ. Monit. 6, 278-285. Kalinichev, A.G., Kirkpatrick, R.J., 2002. Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases. Chem. Mater. 14, 3539-3549. Karamanov, A., Pelino, M., Hreglich, A., 2003. Sintered glass-ceramics from municipal solid waste-incinerator fly ashes—part I: the influence of the heating rate on the sinter-crystallisation. J. Eur. Ceram. Soc. 23, 827-832. Karlfeldt Fedje, K., Ekberg, C., Skarnemark, G., Steenari, B.M., 2010. Removal of hazardous metals from MSW fly ash—an evaluation of ash leaching methods. J. Hazard. Mater. 173, 310-317. Károly, Z., Mohai, I., Tóth, M., Wéber, F., Szépvölgyi, J., 2007. Production of glass-ceramics from fly ash using arc plasma. J. Eur. Ceram. Soc. 27, 1721-1725. Khemis, M., Leclerc, J.P., Tanguy, G., Valentin, G., Lapicque, F., 2006. Treatment of industrial liquid wastes by electrocoagulation: experimental investigations and an overall interpretation model. Chem. Eng. Sci., 61, 3602-3609. Kida, A., Noma, Y., Imada, T., 1996. Chemical speciation and leaching properties of elements in municipal incinerator ashes. Waste Manage. 16, 527-536. Kikuchi, R., 2001. Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker. Resour. Conserv. Recycl. 31, 137-147. Kim, S.O., Moon, S.H., Kim, K.W., Yun, S.T., 2002. Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges. Water Res. 36, 4765-4774. Kim, T.H., Park, C., Shin, E.B., Kirm, S., 2003. Effects of Cl-based chemical coagulants on electrochemical oxidation of textile wastewater. Desalin. 155, 59-65. Kirby, C.S., Rimstidt, J.D., 1994. Interaction of municipal solid waste ash with water. Environ. Sci. Technol. 28, 443-451. Kobylecki, R.P., Ohira, K., Ito, I., Fujiwara, N., Horio, M., 2001. Dioxin and fly ash free incineration by ash pelletization and reburning. Environ. Sci. Technol. 35, 4313-4319. Koparal, A.S., Yildiz, Y.S., Keskinler, B., Demircioglu, N., 2008. Effect of initial pH on the removal of humic substances from wastewater by electrocoagulation. Sep. Purif. Technol. 59, 175-182. Krishna, R.R., Parupudi, U.S., Devulapalli, S.N. and Xu, Y.C., 1997. Effects of soil composition on the removal of chromium by electrokinetics. J. Hazard. Mater. 55, 135-158. Kuchar, D., Fukuta, T., Onyango, M.S., Matsuda, H., 2007. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery. Chemosphere 67, 1518-1525. Lancellotti, I., Kamseu, E., Michelazzi, M., Barbieri, L., Corradi, A., Leonelli, C., 2010. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Manage. 30, 673-679. Lee, P.K., Yu, Y.H., Yun, S.T., Mayer, B., 2005. Metal contamination and solid phase partitioning of metals in urban roadside sediments. Chemosphere 60, 672-689. Lei, M., Liao, B.H., Zeng, Q.R., Qin, P.F., Khan, S., 2008. Fraction distributions of lead, cadmium, copper, and zinc in metal-contaminated soil before and after extraction with disodium ethylenediaminetetraacetic acid. Commun. Soil Sci. Plant Anal. 39, 1963 - 1978. Lemos, F.A., Sobral, L.G.S., Dutra, A.J.B., 2006. Copper electrowinning from gold plant waste streams. Miner. Eng. 19, 388-398. Li, M.G., Sun, C.J., Gau, S.H., Chuang, C.J., 2010. Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash. J. Hazard. Mater. 174, 586-591. Lietz, W. and Galling, G., 1989. Metals from sediments. Water Res. 23, 247-252. Liu, Y., Ma, L., Li, Y., Zheng, L., 2007. Evolution of heavy metal speciation during the aerobic composting process of sewage sludge. Chemosphere 67, 1025-1032. Liu, S.H., Wang, H.P., 2004. In situ speciation studies of copper-humic substances in a contaminated soil during electrokinetic remediation. J. Environ. Qual. 33, 1280-1287. Loganathan, P., Vigneswaran, S., Kandasamy, J., Naidu, R., 2012. Cadmium sorption and desorption in soils: a review. Crit. Rev. Environ. Sci. Technol. 42, 489-533. Ludwig, B., Khanna, P., Prenzel, J., Beese, F., 2005. Heavy metal release from different ashes during serial batch tests using water and acid. Waste Manage. 25, 1055-1066. Mangialardi, T., Paolini, A. E., Polettini, A. and Sirini, P., 1999. Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices, J. Hazard. Mater., 70, 53-70. Mangialardi, T., 2001. Sintering of MSW fly ash for reuse as a concrete aggregate. J. Hazard. Mater. 87, 225-239. Mangialardi, T., 2003. Disposal of MSWI fly ash through a combined washing-immobilisation process. J. Hazard. Mater. 98, 225-240. Martínez-Huitle, C.A., Brillas, E., 2009. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal., B: Environ. 87, 105-145. Merzouk, B., Gourich, B., Sekki, A., Madani, K., Chibane, M., 2009. Removal turbidity and separation of heavy metals using electrocoagulation- electroflotation technique: a case study. J. Hazard. Mater. 164, 215-222. Miretzky, P., Fernandez-Cirelli, A., 2008. Phosphates for Pb immobilization in soils: a review. Environ Chem Lett 6, 121-133. Mizutani, S., Yoshida, T., Sakai, S.i., Takatsuki, H., 1996. Release of metals from MSWI fly ash and availability in alkali condition. Waste Manage. 16, 537-544. Mollah, M.Y.A., Schennach, R., Parga, J.R., Cocke, D.L., 2001. Electrocoagulation (EC) — science and applications. J. Hazard. Mater. 84, 29-41. Mollah, M., Yousuf, A., Morkovsky, P., Gomes, J.A.G., Kesmez, M., Pargad, J., Cocke, D.L., 2004. Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 114, 199-210. Montemor, M.F., Simões, A.M.P., Ferreira, M.G.S., 2003. Chloride-induced corrosion on reinforcing steel: from the fundamentals to the monitoring techniques. Cem. Concr. Compos. 25, 491-502. Mouanga, M., Ricq, L., Douglade, G., Douglade, J., Berçot, P., 2006. Influence of coumarin on zinc electrodeposition. Surf. Coat. Technol. 201, 762-767. Mouedhen, G., Feki, M., De Petris-Wery, M., Ayedi, H.F., 2009. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena. J. Hazard. Mater. 168, 983-991. Mulder, E., 1996. Pre-treatment of MSWI fly ash for useful application. Waste Manage., 16, 181-184. Nagib, S., Inoue, K., 2000. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy, 56, 269-292. Nyer, E.K., Fam, S., Kidd, D.F., Palmcr, P.L., Bocttcheer, G.T., Crossman, L., Suthersan, S.S., 1996. In-situ treatment. CRC Press, Inc., Boca Raton, Florida, 310-314. Obrador, A., Rico, M.I., Mingot, J.I., Alvarez, J.M., 1997. Metal mobility and potential bioavailability in organic matter-rich soil-sludge mixtures: effect of soil type and contact time. Sci. Total Environ. 206, 117-126. Okada, T., Tojo, Y., Tanaka, N., Matsuto, T., 2007. Recovery of zinc and lead from fly ash from ash-melting and gasification-melting processes of MSW—comparison and applicability of chemical leaching methods. Waste Manage. 27, 69-80. Ottosen, L.M., Lima, A.T., Pedersen, A.J., Ribeiro, A.B., 2006. Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water. J. Chem. Technol. Biotechnol., 81, 553-559. Oztekin, Y., Yazicigil, Z., 2006. Recovery of metals from complexed solutions by electrodeposition. Desalin. 190, 79-88. Partanen, J., Backman, P., Backman, R., Hupa, M., 2005. Absorption of HCl by limestone in hot flue gases. Part II: importance of calcium hydroxychloride. Fuel 84, 1674-1684. Park, Y.J., Heo, J., 2002. Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling. Ceram. Int. 28, 689-694. Pilone, D., Kelsall, G.H., 2006. Prediction and measurement of multi-metal electrodeposition rates and efficiencies in aqueous acidic chloride media. Electrochim. Acta 51, 3802-3808. Qian, G., Zhang, H., Zhang, X., Chui, P.C., 2005. Modification of MSW fly ash by anionic chelating surfactant. J. Hazard. Mater. 121, 251-258. Quina, M.J., Bordado, J.C., Quinta-Ferreira, R.M., 2008. Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manage. 28, 2097-2121. Quina, M.J., Bordado, J.C.M., Quinta-Ferreira, R.M., 2011. Percolation and batch leaching tests to assess release of inorganic pollutants from municipal solid waste incinerator residues. Waste Manage. 31, 236-245. Rabah, M.A., 2000. Recovery of iron and copper from spent HCl used to clean up dirty car radiators. Hydrometallurgy 56, 75-92. Reddy, B., Glass, G.K., Lim, P.J., Buenfeld, N.R., 2002. On the corrosion risk presented by chloride bound in concrete. Cem. Concr. Compos. 24, 1-5. Renaudin, G., Kubel, F., Rivera, J.P., Francois, M., 1999. Structural phase transition and high temperature phase structure of Friedels salt, 3CaO • Al2O3 • CaCl2 • 10H2O. Cem. Concr. Res. 29, 1937-1942. Röhrs, J., Ludwig, G., Rahner, D., 2002. Electrochemically induced reactions in soils—a new approach to the in-situ remediation of contaminated soils: part 2: remediation experiments with a natural soil containing highly chlorinated hydrocarbons. Electrochim. Acta 47, 1405-1414. Rostami, I., Juhasz, A.L., 2011. Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review. Crit. Rev. Environ. Sci. Technol. 41, 623-656. Sakai, S.i., Hiraoka, M., 2000. Municipal solid waste incinerator residue recycling by thermal processes. Waste Manage. 20, 249-258. Sawyer, C.N., McCarty, P.L., Parkin, G.F., 1994. Chemistry for environmental engineering, 4th edition, McGraw-Hill, Inc., New York, 332-334. Sirés, I., Brillas, E., 2012. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ. Int. 40, 212-229. Sloot, H.A., Kosson, D.S., Hjelmar, O., 2001. Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Manage. 21, 753-765. Smith, S.R., 2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 35, 142-156. Sudharshan, S., Naidu, R., Mallavarapu, M., Bolan, N., 2012. DDT remediation in contaminated soils: a review of recent studies. Biodegradation 23, 851-863. Sun, C.J., Li, M.G., Gau, S.H., Chuang, C.J., 2011a. Effect of the milling solution on lead stabilization in municipal solid waste incinerator fly ash during the milling processes. Waste Manage. 31, 318-324. Sun, C.J., Li, M.G., Gau, S.H., Wang, Y.H., Jan, Y.L., 2011b. Improving the mechanical characteristics and restraining heavy metal evaporation from sintered municipal solid waste incinerator fly ash by wet milling. J. Hazard. Mater. 195, 281-290. Suryavanshi, A.K., Narayan Swamy, R., 1996. Stability of Friedel''s salt in carbonated concrete structural elements. Cem. Concr. Res. 26, 729-741. Suryavanshi, A.K., Scantlebury, J.D., Lyon, S.B., 1996. Mechanism of Friedel''s salt formation in cements rich in tri-calcium aluminate. Cem. Concr. Res. 26, 717-727. Szpyrkowicz, L., Radaelli, M., Daniele, S., 2005. Electrocatalysis of chlorine evolution on different materials and its influence on the performance of an electrochemical reactor for indirect oxidation of pollutants. Catal. Today 100, 425-429. Talero, R., Trusilewicz, L., 2012. Morphological differentiation and crystal growth form of Friedel''s salt originated from pozzolan and portland cement. Ind. Eng. Chem. Res. 51, 12517-12529. Tessier, A., Campbell, P.G.C., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844-851. Thakur, C., Srivastava, V.C., Mall, I.D., 2009. Electrochemical treatment of a distillery wastewater: parametric and residue disposal study. Chem. Eng. J., 148, 496-505. Thipse, S.S., Schoenitz, M., Dreizin, E.L., 2002. Morphology and composition of the fly ash particles produced in incineration of municipal solid waste. Fuel Process. Technol. 75, 173-184. Traina, G., Morselli, L., Adorno, G.P., 2007. Electrokinetic remediation of bottom ash from municipal solid waste incinerator. Electrochim. Acta 52, 3380-3385. Traina, G., Ferro, S., De Battisti, A., 2009. Electrokinetic stabilization as a reclamation tool for waste materials polluted by both salts and heavy metals. Chemosphere 75, 819-824. Trompette, J.L., Vergnes, H., Coufort C., 2008. Enhanced electrocoagulation efficiency of lyophobic colloids in the presence of ammonium electrolytes. Colloids Surf. A: Physicochem. Eng. Aspects 315, 66–73. Un, U.T., Altay, U., Koparal, A.S., Ogutveren, U.B., 2008. Complete treatment of olive mill wastewaters by electrooxidation. Chem. Eng. J. 139, 445-452. U.S. EPA, 2002. Office of solid waste and emergency response, technology innovation office, Washington, DC. van der Sloot, H.A., Kosson, D.S., 2012. Use of characterisation leaching tests and associated modelling tools in assessing the hazardous nature of wastes. J. Hazard. Mater. 207–208, 36-43. Van Herck, P., Van der Bruggen, B., Vogels, G., Vandecasteele, C., 2000. Application of computer modelling to predict the leaching behaviour of heavy metals from MSWI fly ash and comparison with a sequential extraction method. Waste Manage. 20, 203-210. Van Herck, P., Vandecasteele, C., 2001. Evaluation of the use of a sequential extraction procedure for the characterization and treatment of metal containing solid waste. Waste Manage. 21, 685-694. Vane, M.L. and Zang, G.M., 1997. Effects of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: implications for electro-kinetic soil remediation processes. J. Hazard. Mater. 55, 1-22. Vieille, L., Rousselot, I., Leroux, F., Besse, J.P., Taviot-Guého, C., 2003. Hydrocalumite and its polymer derivatives. 1. reversible thermal behavior of Friedel''s salt: a direct observation by means of high-temperature in situ powder x-ray diffraction. Chem. Mater. 15, 4361-4368. Vítková, M., Ettler, V., Sebek, O., Mihaljevic, M., Grygar, T., Rohovec, J., 2009. The pH-dependent leaching of inorganic contaminants from secondary lead smelter fly ash. J. Hazard. Mater., 167, 427-433. Virkutyte, J., Sillanpää, M., Latostenmaa, P., 2002. Electrokinetic soil remediation—critical overview. Sci. Total Environ. 289, 97-121. Wan, X., Wang, W., Ye, T., Guo, Y., Gao, X., 2006. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure. J. Hazard. Mater. 134, 197-201. Wang, K.S., Sun, C.J., Yeh, C.C., 2002. The thermotreatment of MSW incinerator fly ash for use as an aggregate: a study of the characteristics of size-fractioning. Resour. Conserv. Recycl. 35, 177-190. Wang, K.S., Chiang, K.Y., Lin, K.L., Sun, C.J., 2001. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash. Hydrometallurgy 62, 73-81. Wang, J., Kalinichev, A.G., Kirkpatrick, R.J., Hou, X., 2000. Molecular modeling of the structure and energetics of hydrotalcite hydration. Chem. Mater. 13, 145-150. Wang, T., Liu, T., Sun, C., 2008. Application of MSWI fly ash on acid soil and its effect on the environment. Waste Manage. 28, 1977-1982. Weng, C. H., Lin, Y. H., Hsieh, Y. H., 2000. Electrokinetic remediation of trichloroethylene contaminated kaolinite. J. Chin. Inst. environ. Eng. 10, 279-289. Wiles, C.C., 1996. Municipal solid waste combustion ash: state-of-the- knowledge. J. Hazard. Mater. 47, 325-344. Wu, C.W., Sun, C.J., Gau, S.H., Hong, C.L., Chen, C.G., 2013. Mechanochemically induced synthesis of anorthite in MSWI fly ash with kaolin. J. Hazard. Mater. 244–245, 412-420. Wu, H.Y., Ting, Y.P., 2006. Metal extraction from municipal solid waste (MSW) incinerator fly ash—Chemical leaching and fungal bioleaching. Enzyme Microb. Technol. 38, 839-847. Wu, Y., Chi, Y., Bai, H., Qian, G.,
摘要: 國內24座大型垃圾焚化廠,每焚化1公噸的垃圾,約產生157公斤的焚化底渣以及38公斤的焚化飛灰(含反應生成物)。本研究採用水洗、酸萃取以及電化學方法處理飛灰,期望能得到去除飛灰中有害重金屬最佳的組合處理方式。本研究先進行水洗飛灰的實驗,得到最佳的液固比(L/S)為20~25/1。且水洗能從飛灰中去除大量溶解性的鹽類(KCl, NaCl, SiCl4, CaClOH)以及CaSO4,此可由XRD晶相分析而得到證實。水洗後飛灰重量減少約38%;而以0.5 N HNO3萃取飛灰重量減少約68.6%。中型爐飛灰可溶解性氯鹽含量介於2.3~11.2%;大型爐則介於16.0~25.5%。一次線性迴歸焚化飛灰水洗液中氯鹽與導電度結果顯示,線性迴歸係數r2值均高達0.98以上。可見每座焚化廠皆有一條飛灰水洗液特性氯鹽與導電度的ㄧ次線性關係式。 本研究採用水洗飛灰最佳操作參數液固比(L/S)為20/1的條件,進行七種不同電化學程序處理飛灰,包括有直接電動力(DEK)、結合水洗及電動力(WEK)、電沉積(ED)、結合酸萃取及電沉積(Acid+ED)、鋁陽極電解氧化(Al/EO)、鋁陽極電解混凝(Al/EC)以及氧化銥電解氧化(IrO2/EO)等方法。分析方法主要包括:pH、導電度、氯鹽、重金屬鉛(Pb)、銅(Cu)、鉻(Cr)、鎘(Cd)的毒性特性溶出程序(TCLP)試驗分析、重金屬序列萃取分析、能量分散光譜(EDS)的元素組成分析以及X光粉末繞射(XRD)的晶相分析等。 WEK、ED、Al/EO法等技術處理飛灰後,能將飛灰中的重金屬由較弱的鍵結型態轉變成為較強相態,使得飛灰中重金屬能穩定而通過TCLP的法規標準值;亦即此類技術可以穩定(Stabilization)住飛灰中的有害重金屬。然而DEK以及IrO2/EO法,卻無法將有害重金屬穩定,無法通過TCLP的法規標準。以液固比(L/S) 0.5 N硝酸進行飛灰酸萃結果顯示,無機離子Cl、Pb、Cu的萃出率(Leaching percentage; Leachability)分別達到87.6、59.4、77.0%。採用結合Al/EO及Al/EC (Al/EO+Al/EC)法等串聯式組合處理技術,可得到處理飛灰程序的最佳組合。以Al/EO的非直接電解氧化法處理飛灰,具有與水洗相同的功能,能將KCl, NaCl, SiCl4, CaClOH, CaSO4全部洗出,使飛灰成功改質,產生能誘捕及吸附重金屬轉成較穩定且含不溶解性氯鹽的Friedel’s salt (3CaO.Al2O3.CaCl2.10H2O)產物;Al/EC法處理廢液,成為乾淨可再循環使用處理飛灰的回收水。此組合法處理每公噸飛灰所需電力成本約為新台幣4,622元,顯示頗具再利用商業化的價值,且本研究並提出Al/EO技術處理飛灰產生Friedel’s salt的反應機制,以及Al/EO+Al/EC組合法處理飛灰商業化的初步構想。
There are 24 large-scale municipal solid waste incinerator (MSWI) plants in Taiwan. One ton of MSW can produce 157 kg of bottom ash and 38 kg of fly ash (including reaction products) after incineration. The study adopted water washing, acid leaching, and electrochemical methods to evaluate the effects, then proposed the optimal manner, to remove toxic heavy metals in MSWI fly ashes. The study first conducted with the experiments of washing MSWI fly ash, and obtained the optimal liquid-to-solid (L/S) ratios between 20-25. Water washing could relieve a large amount of salts (KCl, NaCl, SiCl4, CaClOH) and CaSO4 from fly ash, which was further proved by the XRD crystalline analysis. The water washing of fly ash reduced the mass of ash sample by 38%; in contrast, leaching fly ash with 0.5 N nitric acid reduced the mass by 68.6%. The leachable amounts of chloride in fly ashes from middle- and large-scale plants of MSWI were 2.3-11.2 and 16.0-25.5%, respectively. The regression analyses of the relationships between the chloride concentrations and the EC values in the leachates produced by washing fly ash showed that the coefficients of determination (r2) were all above 0.98. Clearly, each MSW incineration plant has its own ash characteristics as well as a specific regression line for the leachates from fly ash. The following 7 kinds of electrochemical techniques were undertaken at the optimum operational condition based on water washing fly ash that is by an L/S ratio of 20/1. The conducted experiments included direct electrokinetic (DEK), pretreatment of water washing and electrokinetic (WEK), electrodeposition (ED), combined acid leaching and ED (Acid+ED), aluminum anode electro-oxidation (Al/EO), aluminum anode electrocoagulation (Al/EC), and iridium oxide anode electro-oxidation (IrO2/EO) methods. The analyzed items during each test mainly included pH, electrical conductivity, the toxicity characteristic leaching procedure (TCLP) tests of heavy metals for Pb, Cu, Cr, Cd, the sequential extraction procedure for heavy metals, energy dispersive spectrometer (EDS), and X-ray power diffraction (XRD) analyses. The WEK, ED, and Al/EO techniques can transfer the weakly-bonded fractions of toxic heavy metals to the strongly-bonded fractions, which indicate these three techniques can stabilize the toxic heavy metals and pass the TCLP regulatory limits. Nevertheless, DEK and IrO2/EO techniques cannot stabilize the toxic heavy metals, thus fail to pass the TCLP regulatory limits. Acid leaching fly ash at a fixed L/S ratio of 20/1 with a 0.5 N HNO3 solution causes the leachability of Cl, Pb, and Cu to be 87.6, 59.4, and 77.0%, respectively. Based on the results from the treating series which combine methods of Al/EO and Al/EC (Al/EO+Al/EC) to detoxify the fly ash, the optimum operational process is suggested. By using the indirect Al/EO technique can achieve the same purposes as by using water-washing process, in terms of the extraction of KCl, NaCl, SiCl4, CaClOH, and CaSO4 from fly ash. The treated fly ash is a success due to the processes changing the forms of heavy metals, causing the entrapment and adsorption of heavy metals, and also converting into Friedel’s salt (3CaO.Al2O3.CaCl2.10H2O), which can stabilize heavy metals and also contain insoluble chloride in crystal structure. The wash-out leachate can be treated as well with the Al/EC technique, which can recycle the high-salinity leachate as clean water to be reused again in the next treatment. The electric power cost of the Al/EO+Al/EC for treatment of one ton of fly ash requires approximately NT$ 4,622 dollars, which has competitive value for commercial development. Furthermore, the reaction mechanisms for forming the Friedel’s salt in the Al/EO process, and the conceptual plan for recycling MSWI fly ash by the series combining methods of Al/EO+Al/EC are also investigated.
URI: http://hdl.handle.net/11455/5843
其他識別: U0005-2901201313160500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2901201313160500
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.