Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5854
標題: 應用Electro-Fenton氧化程序處理抗生素(SMX)廢水之研究
Application of Electro-Fenton oxidation process on the treatment of antibiotic sulfamethoxazole wastewater
作者: 陳芊妤
Chen, Chien-Yu
關鍵字: 電芬頓氧化程序
Electro-Fenton oxidation process
抗生素
廢水處理
電生成過氧化氫
Antibiotic
Wastewater treatment
hydrogen peroxide generated
出版社: 環境工程學系所
引用: 中文部分 (1) 圖書 石濤著,環境化學,鼎茂圖書出版股份有限公司,P.3-23~3-25,2009。 (2) 期刊論文 王妤甄,以微波輔助頂空固相微萃取法萃取水樣中的多環麝香化合物,碩士 論文,國立中央大學化學系,2009。 李佳恬,以毛細電泳分離具對掌異構物之藥物的方法開發與應用,碩士論 文, 國立中央大學化學系,2008。 李紘屹,以光電芬頓程序降解含鄰-甲苯胺廢水,碩士論文,嘉南藥理科技 大學環境工程與科學系,2010。 邱嘉明,臭氧去除水中磺胺劑類及巨環素類抗生素,碩士論文,國立台灣大學環境工程系,2008。 林正芳、林郁真、余宗賢,新興污染物(抗生素與止痛藥)於特定污染源環境之流佈,持久性有機污染物(含戴奧辛)研討會,2008。 康世芳、許聖哲、楊振昇、陳孟春,Fenton程序氧化與混凝處理染整業生物出流 水之研究,第二十四屆廢水處理技術研討會論文集,P.225~230,1999。 林思妤,應用TiO2/ITO 複合光觸媒薄膜電極光電催化分解水中磺醯胺類化合物研究,碩士論文,國立高雄第一科技大學環境與安全衛生工程系,2011。 林崇立,軟膏基質及磺胺劑軟膏安定性之研究,碩士論文,朝陽科技大學應 用化學系,2002。 范竣程,以芬頓流體化床程序降解鄰-甲苯胺,碩士論文,嘉南藥理科技大 學環境工程與科學系,2010。 郭韋廷,電化學處理MSWI飛灰無害之研究,碩士論文,國立中興大學環 境工程研究所,2010。 秦興國,Fenton法應用於處理染料廢水之研究,專題研究報告,大同大學 化學工程學系,2003。 張安慈,比較以不同芬頓程序降解對-乙醯氨基苯酚之反應行為,嘉南藥理 科技大學環境工程與科學系,2011。 張芳淑、高思懷、吳嘉麗,pH值在Fenton系統中所扮演的角色探討,第20屆廢水處理技術研討會論文,6-61-6-67,1995。 陳昱峰、劉新校、李中光,Fenton 法處理樹脂廢水之研究,區域與環境資 源永續發展研討會,萬能科技大學工程科技研究所,2011。 張祐書,以Electro-Fenton程序處理對苯二胺溶液之研究,碩士論文,國立台灣大學化學工程研究所,2011。 張家源、林曜文、甘鳳琴、林陳彥、陳瑞文,Fenton試劑添加方式對處理ABS廢水之影響,嘉南學報第二十九期,嘉南藥理科技大學環境工程與科學系,P.213∼223,2004。 張博荀,. H2O2/Fe2+化學氧化法處理反應性染料- Black B 之研究,碩士論文, 國立成功大學化學工程研究所,2004。 陳嘉惠,陳櫻丹,林亭儀,李俊璋,「新興環境污染物綜論」,環境健康風 險季刊,行政院衛生署國民健康局,第二季,2009。 張靜宜、謝季吟,家庭廢棄藥品處置與環境風險認知之研究—以台灣南部民 眾為例,碩士論文,國立屏東科技大學環境工程與科學系,2011。 楊依婷,應用Electro-Fenton程序處理抗生素廢水(TMP)之研究,碩士論文,國立中興大學環境工程研究所,2012。 楊智其,TiO2/CNTs 複合材料與兩階段式處理對磺胺甲基噁唑降解效率比較,博士論文,國立暨南大學土木工程學系,2011。 鄭佩珊,應用電化學合成過氧化氫處理染料廢水(RB5)之研究,碩士論文,國立中興大學環境工程系,2011。 蔡宏志,Photo-Fenton 法處理反應性偶氮染料Black B 與酚之研究,碩士論 文,國立中央大學化學系,2005。 賴秀美,Electro-Fenton處理水相氯酚類化合物之研究,碩士論文,國立中興大學環境工程研究所,2010。 賴淑雯,以高效液相層析儀分析Trimethoprim and Sulfamethoxazole 的藥品,碩士論文,朝陽科技大學應用化學系,2006。 謝宜紋,CNTs/TiO2複合奈米材料去除水中磺胺甲基噁唑可行性之研究,碩 士論文,暨南大學土木工程學系, 2010。 謝長原,電解催化氧化氯酚之研究,碩士論文,國立成功大學環境工程研 究所,2001。 (3) 網路資源 維基百科:http://zh.wikipedia.org/wiki/%E7%94%B5%E8%A7%A3 美國地質調查所:http://www.usgs.gov/ 歐盟EUGRIS(土壤與地下水管理資訊系統):http://www.eugris.info/soil_and_water_directory.asp (4) 其他 李鈞震,藝術文化圖書會,2013。 水質保護處,事業放流水中特殊污染物排放情形及管理策略,2009。 行政院環境保護署環境檢驗所,水中醫藥類及其代謝之殘留化學物質之檢 測技術建立研究(2/4),期末報告,2008。 行政院環境保護署,特定污染源廢(污)水中新興污染物管制研究專案計畫,期末報告,2008。 行政院國民衛生署衛生局,Environmental Health Risk Quarterly(第二季),2009。 西文部分 Abdessalem, A. K., Bellakhal, N., Oturan, N., Dachraoui, M., and Oturan, M. A., 2010. Treatment of a mixture of three pesticides by photo- and electro-Fenton processes.Desalination, 250, 450-455. Alcock, R. E., Sweetman, A., and Jones, K. C., 1999. Assessment of organic contaminant fate in wastewater treatment plants selected compounds and physiochemical properties.Chemosphere, 38, 2247-2262. Asahara, T., Seno, M., and Tsuchiya, M., 1969. Electrolytic polymerization of acrylonitrile. Kinetic approach and effect of supporting electrolytes. Bulletin of the Chemical Society of Japan, 42(9), 2416-2421. Awad, Y. M. and Abuzaid, N. S., 1999. Electrochemical oxidation of phenol using graphite anodes. Separation science and technology, 34(4), 699-708. Azzam, M. O., Tarazi, M. A., and Tahboub, Y., 2000. Anodic Destruction of 4-Chlorophenol Solution. Journal of Hazardous Materials, 75, 99-113. Babuponnusami, A. and Muthukumar, K., 2012. Advanced oxidation of phenol: a comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chemical Engineering Journal, 183, 1-9. Benitez, F. J., Acero, J. L., Real, F. J., and Leal, A. I., 2001. The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Research, 35(5),1338-1343. Bigda, R. J., 1995. Consider Fentons chemistry for wastewater treatment. Chemical Engineering Progress, 91(12), 62-66. Brillas, E., Calpe, J. C., and Casado, J., 2000. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water research, 34, 2253-2262. Brillas, E. and Casado, J., 2002. Aniline degradation by Electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere 47, 241-248. Chou, S., Huang, Y. H., Lee, S. N., Huang, G. H., and Huang, C., 1999. Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Res. 33, 751-759. Dirany, A., Sires, I., Oturan, N., and Oturan, M. A., 2010. Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 81(5), 594-602. Elmolla, E. S. and Chaudhuri, M., 2010. Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination,256(1), 43-47. Elmund, G. K., Morrison, S. M., Grant, D.W., and Nevins, M. P., 1971. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bulletin of Environmental Contamination and Toxicology, 6(2), 129-132. Guo, R. T., Pan, W. G., Zhang, X. B., Ren, J. X., Jin, Q., Xu, H. J., and Wu, J., 2011. Removal of NO by using Fenton reagent solution in a lab-scale bubbling reactor. Fuel, 90(11), 3295-3298. Halling-Sorensen, B., 2001. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Archives of Environmental Contamination and Toxicology, 40, 451-460. Hamscher, G., Priess, B. and Nau, H., 2006. A survey of the occurrence of various sulfonamides and tetracyclines in water and sediment samples originating from aquaculture systems in northern germany in summer 2005. Archiv Fur Lebensmittelhygiene, 57, 97-101. Holtz S., 2006. There is no “Away.” Pharmaceuticals, personal care products, and endocrine-disrupting substances: Emerging contaminants detected in water, Canadian institude for environmental law and policy. Huang, J. Y., Liao, W. P., and Lai, S. M., 2012. Removal of 2, 4-dichlorophenol and pentachlorophenol from aqueous media by electrochemical process. Environmental Earth Sciences, 1-8. Kang, N., Lee, D.S., and Yoon, J., 2002. Kinetic modeling of Fenton oxidation of phenol and momochlorophenls. Chemosphere, 47, 915-924. Kang, S. F., Liao, C. H., and Po, S. T., 2000. Decolorization of textile wastewater by photo-Fenton oxidation technology. Chemosphere, 41(8), 1287-1294. Kavitha V. and Palanivelu K., 2004. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55, 1235. Kuo, W. G., 1992. Decolorizing dye wastewater with Fenton’sreagent. Water Research, 26, 881-886. Kwon, B. G., Lee, D. S., Kang, N., and Yoon, J., 1999. Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Water Research,33,2110–2118. Lapworth, D. J., Baran, N., Stuart, M. E., and Ward, R. S., 2012. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environmental pollution, 163, 287-303. Lei, H., Li, H., Li, Z., Li, Z., Chen, K., Zhang, X., and Wang, H., 2010. Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode. Process Safety and Environmental Protection, 88(6), 431-438. Miao X. S., Bishay F., Chen M., and Metcalfe C. D., 2004. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environ Sci Technol, 38, 3533–41. Muruganandham, M. and Swaminathan, M., 2004. Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology. Dyes and Pigments, 63, 315-321. Nidheesh, P. V. and Gandhimathi, R., 2012. Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination, 299, 1-15. Nunez, L., Antonio, J., Hortal, G., and Torrades, F., 2007. Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes. Dyes and Pigments, 75, 647-652. Oliveira, I. S., Viana, L., Verona, C., Fallavena, V. L., Azevedo, C. M., and Pires,M., 2007. Alkydic resin wastewaters treatment by fenton and photo-Fenton processes. Journal of hazardous materials, 146(3), 564. Oturan, M. A., Oturan, N., Lahitte, C., and Trevin, S., 2001. Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent application to the mineralization of an organic micropollutantpentachlorophenol. Journal of Electroanalytical Chemistry, 507, 96-102. Ozcan, A., Şahin, Y., Koparal, A. S., and Oturan, M. A., 2008. Degradation of picloram by the electro-Fenton process. Journal of hazardous materials, 153(1), 718-727. Pignatello, J. J., 1992. Dark and photoassisted Fe3+ catalyzed degradation of chlorophenox herbicides by hydrogen peroxide. Environ. Sci. Technol. 26, 944-951. Rosales, E., Iglesias, O., Pazos, M., and Sanroman, M. A., 2012. Decolourisation of dyes under electro-Fenton process using Fe alginate gel beads. Journal of hazardous materials, 213, 369-377. Şahinkaya, S., 2013. COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. Journal of Industrial and Engineering Chemistry,19, 601-605. Sun, J. H., Shi, S. H., Lee, Y. F., and Sun, S. P., 2009. Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution.Chemical Engineering Journal, 155, 680-683. Tahar, N. B. and Savall, A., 1998. Mechanistic aspects of phenol electrochemical degradation by oxidation on a Ta/PbO2 anode. Journal of the electrochemical society, 145(10), 3427-3434. Tang, W. Z. and Huang, C.P.,1996. Effect of chlorine content of chlorinated phenols on their oxidation kinetics by Fenton''s reagent. Chemosphere 33, 1621-1635. Trovo, A. G., Nogueira, R. F., Aguera, A., Fernandez-Alba, A. R., Sirtori, C., and Malato, S., 2009. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water research, 43(16), 3922-3931. Trujillo, D., Font, X., and Sanchez, A., 2006. Use of Fenton reaction for the treatment of leachate from composting of different wastes. Journal of hazardous materials, 138(1), 201-204. Wang, A., Li, Y. Y., and Estrada, A. L., 2011. Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation. Applied Catalysis B: Environmental, 102(3), 378-386. Wang, C. T., Chou, W. L., Chung, M. H., and Kuo, Y. M., 2010. COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination, 253(1), 129-134. Wang, Y., Li, X., Zhen, L., Zhang, H., Zhang, Y., and Wang, C., 2012. Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate. Journal of hazardous materials, 229, 115-121. Yang, M., Hu, J., and Ito, K., 1998. Characteristics of Fe2+/H2O2/UV oxidation process. Environmental Technology 119, 183-191. Zhang, H., Zhang, D., and Zhou, J., 2006. Removal of COD from landfill leachate by electro-Fenton method. Journal of Hazardous Materials, B135, 106-111.
摘要: 高級氧化處理(AOPs)之一的Fenton氧化法,是一種常見又有效的氧化處理法,主要藉由過氧化氫以及亞鐵離子在酸性條件下進行反應,而氧化過程中產生的氫氧自由基(HO‧),具有高氧化力且不具選擇性,能針對廢水中各種有機污染物進行分解。本研究使用E-Fenton程序處理抗生素 (Sulfamethoxazole , SMX)廢水,配合適當的參數,探討其礦化作用及去除能力。系統分別以不銹鋼網及氧化銥棒做為陰陽兩電極之材料,陰極處藉由曝氣產生溶氧,並於通電後還原生成過氧化氫,在操作中控制鐵的添加量,利用陰極之還原能力維持足夠的亞鐵離子,以減少催化劑的添加成本且減少污泥的產生。 由背景實驗結果可知,實驗之過氧化氫生成最佳操作參數為電流1.25 A以及曝氣量1.0 NL/min,在此條件下操作3小時,其最大過氧化氫生成累積量為9.49 mg/L,而反應結果之生成速率約為0.328 mg-H2O2/min。 研究結果顯示,以電解系統直接電解SMX廢水,其去除率只有4.97 %。而Fenton氧化過程在酸性(pH=3)時,使用最佳過氧化氫與亞鐵離子的濃度分別是50 mg/L及3 mg/L,來處理10 mg/L的SMX水溶液,經60分鐘後,其SMX去除率為76.48 %,在E-Fenton氧化程序以生成實驗之最佳操作條件反應180分鐘後其SMX去除率為82.46 %。最後在延長時間至6小時後,發現直接電解、Fenton及E-Fenton處理的SMX去除率分別是11.06 %、75.54 %及89.72 %;COD則也是以E-Fenton處理有最高的去除率50.67 %。因此,結果說明Electro-Fenton氧化程序優於傳統Fenton處理法,不但利於SMX之去除,並且會增進COD的去除效果。
Fenton oxidation treatment that is one of advanced oxidation processes (AOPs) is a common and effective method. It is carried out under acidic condition through hydrogen peroxide and ferrous ions in the reaction. The oxidation process produces a high oxidizing power and non-selectivity hydroxyl radical (HO ‧), which can decompose a variety of organic pollutants in wastewater in the process. In the research, the application of Electro-Fenton process for the degradation of antibiotic Sulfamethoxazole (SMX) wastewater with the appropriate parameters to explore the mineralization and removal capacity was investigated. Stainless steel net and iridium oxide were regarded as the material of cathode and anode respectively in our system. H2O2 was electro-generated by reduction of oxygen in the cathode, meanwhile controling the added amount of ferrous ion in the operation. The use of the reducing ability of the cathode to generate H2O2 and sufficient ferrous ion catalyst to be added was to reduce costs and to minimize the generation of sludge. Based on the results of background experiment, the optimal parameters for electro-generated H2O2 were at current of 1.25 A and air flow of 1.0 NL/min. Under these conditions, the maximum remnant of H2O2 was 9.49 mg/L in 180 min of operation. The formation rate was 0.328 mg-H2O2/min in 30 min without the reaction. The results showed that, under direct electrolysis of the electrolytic system for SMX wastewater, the removal rate was only 4.97 %. And the Fenton oxidation process in acidic solution (pH = 3), treating an aqueous solution of 10 mg /L SMX, the best hydrogen peroxide and ferrous ion concentration was 50 mg / L and 3 mg / L respectively, and the SMX removal rate was 76.48 % after 60 min. By Electro-Fenton oxidation process with optimal parameters found in generation experiment, the SMX removal rate was 82.46 % after 180 min. Finally when the treatment time was extended to 6 hours, the direct electrolysis, Fenton and E-Fenton removal rates were 11.06 %, 75.54 % and 89.72 %. The COD removal rate was 50.67 % which is also the best by E-Fenton. Therefore, the results indicate Electro-Fenton is superior to the traditional Fenton treatment method not only on the removal of SMX, but also on the removal of COD.
URI: http://hdl.handle.net/11455/5854
其他識別: U0005-2606201319355000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2606201319355000
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.