Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5869
標題: 油脂分解菌之分離及其降解油脂能力之探討
Isolation and function characterization of grease degrading bacteria
作者: 黃雁萍
Huang, Yen-ping
關鍵字: 脂肪酵素
Lipase
油脂分解菌
Tween80
出版社: 環境工程學系所
引用: 一、 中文文獻 (一) 書籍 李季眉 (1997) 環境微生物,中華民國環境工程學會出版,台北。 蕭蘊華、傅崇德、許鼎君 (1995) 環境工程化學第四版,滄海書局,台中。 歐靜枝 (1990) 乳化溶化技術實務,復漢出版社,台南。勇 (2003) 現代微生物學第一版,藝軒圖書出版社,台北。 張仲民 (1996) 普通土壤學。國立編譯館,台北。 陳國誠 (1999) 微生物酵素工程學再版,藝軒圖書出版社,台北。 陳自珍 (1988) 食品酵素學修訂四版,復文書局,台南。 (二) 期刊 顏興河、王棟、徐岩 (2005) 根霉脂肪酶的研究進展,工業微生物,35(3): 45-49,中國。 曾四恭、莊雅雲 (1999) 硝酸鹽對生物除磷系統及其菌相結構之影響,行政院國家科學委員會專題研究計畫成果報告,台北。 李銘亮、張莉芳 (2008) Geobacillus sp. 嗜熱細菌之分離及其耐熱耐酸酯解酵素之研究,國立臺灣師範大學,生物學報 43(2):95-106,台北。 叢英、蘇拓僮、鄒文銓、楊明、馬鴻雁、張海燕 (2011) 氣相色譜同時測定吐溫80中7種脂肪酸親油基的含量,藥物分析雜誌 31(4):651-654,中國。 林忠亮、方柄勳、黃冬梨、吳奇生 (2005) 大豆油生產生質柴油之生物轉酯化技術探討,石油季刊41(4): 51-58,台北。   (三) 碩士論文 洪明全 (1999) Acinetobacter radioresistens 耐鹼性脂肪酵素基因選殖及其蛋白質之表現,國立成功大學,碩士論文,台南。 許以樺 (2000) 以高溫好氧處理油脂廢水可行性研究,國立中興大學,碩士論文,台中。 陳泰州 (2001) 嗜水性產氣單胞桿菌Aeromonas hydrophila臨床株CKH-29溶血素之純化與分析,國立台灣大學,碩士論文,台北。 莊晟榜 (2002) Tween 系列界面活性劑對微生物降解碳氫化合物之影響,私立中原大學,碩士論文,桃園。 許獻鴻 (2003) 廚餘油分解菌篩選與除油效應評估,國立中興大學,碩士論文,台中。 張淑青 (2003) 以固定化菌體生物觸媒生產生質柴油的生化程序研究,私立長庚大學,碩士論文,桃園。 李承祐 (2004) 以 Tween 80 為碳源生產Acinetobacter radioresistens脂肪酵素,國立成功大學,博士論文,台南。 劉家銘 (2005) 沙拉油分解菌之分離與特性研究,國立中興大學,碩士論文,台中。 陳繼元 (2005) 利用固定化菌體Rhizopus oryzae 生產生質柴油之研究,國立交通大學,碩士論文,新竹。 吳欣庭 (2005) 多重分解酵素生產菌種之篩選鑑定與基本性質研究,私立朝陽科技大學,碩士論文,台中。 陳聖傑 (2008) 以 Rhizopus oryzae 最適化生產轉酯化酶之研究,國立雲林科技大學,碩士論文,雲林。 郭宗興 (2008) 廚餘收集處理模式最適化分析,私立朝陽科技大學,碩士論文,台中。 (四) 網路資源 行政院環境保護署。2002。水中油脂分析方法-萃取重量法。 http://www.niea.gov.tw/niea/WATER/W50621B.htm。   二、 英文文獻 Antonian, E. (1988) Recent advances in the purification, characterization and structure determination of lipases. Lipids 23: 1101-1106. Abdel-Fattah,Y. R. (2002) Optimization of thermostable lipase production from a thermophilic Geobacillus sp. Using Box-Behnken experimental design.Biotechnol. Lett.24: 1217-1222. Brzozowski, A. M., U. Derewenda, Z. S. Derewenda, G. G. Godson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jensen,S.A. Patkar, L. Thim, (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351: 491-494. Britton,L. N. (1984) Microbial degradation of aliphatic hydrocarbons. In:Gibson, D.T. (ed.), Microbial Degradation of Organic Compounds,pp: 89-129. Marcel Dekker Inc., New York Bapiraju, K.V.V.S.N.,Sujatha, P.,Ellaiah, P., and Ramana, T. (2005) Sequentialparanietric optimization of lipase production by a mutant strain Rhizopus sp. BTNT-2. J. Basic Microbiolo. 45: 257-273. Ban, K., Kaieda, M., Matsumoto, T., Kondo, A.,and Fukuda, H. (2001) Whole cell biocatalyst for biodiesel fuel production utilising Rhizopus oryzae cells immobilised within biomass support particles. Biochemical Engineering Journal 8: 39–43. Costas, M., Deive, F. J., and Longo, M. A. (2004) Lipolytic activity insubmerged cultures of Issatchenkia orientalis. Process Biochemistry 39 (12), 2109-2114. Corzo, G. and Revah, S. (1999) Production and characteristics of the lipase from Yarrowia lipolytica 681. Bioresource Technology 70: 173-180. Christova, N., Tuleva, B., and Galabova, D. (1996) Dependence of yeastpermeabilization with triton X-100 on the cell age. Biotechnology Techniques 10(2): 77-78. Crueger, W. and Crueger, A. (1984) Biotechnology: a textbook of industrial microbiology. Science Tech, Madison, WI, 177-178. . Chapus, C. and Semeriva, M. (1976) Mechanism of pancreatic lipase action catalytic properties of modified lipase.Curr.Opin. Biochemistry 15: 4988-4991. Dherbomez, M., Lacrampe, J. L., and Larouquere, J. (1975) Contribution a l''etude de la lipase de Candida lipolytica. Rev. Fr. Corps Gras 22: 147. Dalmau, E., Montesinos J.L., Lotti M., and Casas C. (2000) Effect of different carbon sources on lipase production by Candida rugosa. Enzyme and Microbial Technology 26: 657-663 Dibble, K. G. and Bartha, R. (1979) Effect of environmental parameters on the biodegradation of oil sluge. Applied and Environmental Microbiology 37:729-739. Derewenda, Z. S. and Derewenda, U. (1991) Relationships among serine hydrolases: evidence for a common structural motif in triacyl-glyceride lipases and esterase. Biochemistry and Cell Biology 69: 842−851. Derewenda, Z. S. and Sharp, A. M. (1993) News from the interface: the molecular structure of triacylglyceride lipase. Trends in Biochemical sciences 18: 20-25.  Dharmsthiti, S. and Kuhasuntisuk, B. (2008) Lipase from Pseudomonas aeruginosa LP602: Biochemical Properties Application for Wastewater Treatment. Iranian Journal of Microbiology 3(2): 92–98. Fukuda H., Kondo A., and Noda H.(2001)Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering 92(5): 405 -416. Fukumoto, J., Tsujisaka, Y., and Iwai, M. (1966) Preparation of a stable lipase composition and purification thereof. U.S.Patent 3262863. Fakhreddine, L., Kademi, A., Ait-Abdelkader, N., and Baratti J. C. (1998)Microbial growth and lipolytic activities of moderate thermophilic bacterial strain. Biotechnology Letters 20(9): 879–883 Frost, G. M. and Moss D. A. (1987) Production of enzymes by fermentation, in Biotechnology,vol. 7a, ed. J.F. Kennedy, VCH Publishers, New York, 113–121. Fredrik, B., Sven, E. G., and Ole, K. (1991) The future impact of industrial lipases. TIBTECH. 9:360−363. Gaspar, M. L., Cunningham, M., Pollero,R., and Cabello,M. (1999) Occurrence and properties of an extracellular lipase in Mortierella vinacea. Mycologia 91(1): 108-113. Gargouri, Y., Abderraouf Bensalah, Isabelle Douchet and Robert Verger,(1995)Kinetic behavior of pancreatic lipase in five species using emulsions and monomolecular films of synthetic glycerides. Biochimica et Biophysica Acta 1257: 223−229.   Gilham, D., and Lehner, R. (2005) Techniques to measure lipase and esterase activity in vitro. Methods 36: 139-47. Gupta, R., Gigras, P., Mohapatra, P., Goswami, V.K., and Chuhan, B. (2003) Microbial amylases: a biotechnological perspective. Process Biochemistry 38: 1599-1616. Goldstein, R. M., Mallor, L. M., and Alexander, M. (1985)Reasons for possible failure of inoculation to enhance biodegration. Applied and Environmental Microbiology 50: 977-983. Huge-Jensen, B. and Gormsen, E. (1989) Enzymatic detergent additives. U.S. Patent , 4,810,414. Haas, Michael, J., Cichowicz, David, J., and Bailey, David, G. (1992) Purification and characterization of an extracellular lipase from the fungus Rhizopusdelemar. Lipids 27: 571−576. Hiol, A., Jonzo, M.D., Rugani, N., Druet, D., Sarda, L., and Comeau, L.C (2000) Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme and Microbial Technology 26: 421–430. Hejazi, A. and Falkiner, F.R. (1997) Serratia marcescens. Journal of Medical Microbiology 46(11): 903. Iwai, M., Tsujisaka, Y., Okamoto, Y., and Fukumoto, J. (1973) Lipid requirement for the lipase production by Geotrichum candidum link. Agricultural Biology and Chemistry 37: 929. Jonsson, U. and Snygg, B. G. (1974) Lipase production and activity as a function of incubation time, pH and temperature of four lipolytic micro organisms. Journal of Applied Bacteriology 37:571. Kirk, O., Borchert, T. V., and Fuglsang, C. C. (2002) Industrial enzyme applications. Current Opinion in Biotechnology 13:345–351. Kojima, Y., Yokoe, M., and Mase, T. (1994) Purification and characterization of an alkaline lipase from Pseudomonas fluorescens AK102. bioscience biotechnology and biochemistry 58: 1564−1568. Kaieda, M., Samukawa, T., Kondo, A., and Fukuda, H. (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. Journal of Bioscience and Bioengineering 91(1): 12-15. Li, C.Y., Cheng, C.Y., and Chen, T.L. (2001) Production of Acinetobacter radioresistens lipase using Tween 80 as the carbon source. Enzyme and Microbial Technology 29: 258–263. Lesuisse, Emmanuel, Karin Schlank, and Charles Colson, (1993) Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. European Journal of Biochemistry 216: 155−160. Lin, Shuen-Fuh, Jane-Chyi Lee, Chien-Ming Chiou, (1996) Purification and characterization of a lipase from Neurospora sp. TT-241. Journal of the American Oil Chemists Society73. Lin, S. F., Chiou, C. M., Yeh, C. M., and Tsai, Y. C., (1996) Purification and partial characterization of an alkaline lipase from Pseudomonas pseudoalcaligenes F-111. Applied and Environmental Microbiology 62:1093−1095. Macrae,A. R. (1981) Lipase-catalyzed interesterification of oils and fats.Journal of the American Oil Chemists'' Society.60: 291−294. Ma, F. and Hanna, M.A. (1999) Biodiesel production: a review.Bioresource Technology 70: 1-15. Meito Sangyo Co. Ltd., (1983) Manufacture of lipase, Jap. Patent Appl. 58:51889, Chemical Abstracts 99: 4086. Margesin, R. and Schinner, F. (2001)Biodegradation of diesel-oil-contaminated alpine soils at low temperatures. Applied and Environmental Microbiology 47: 462-468. Margesin, R. and Schinner, F. (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Applied and Environmental Microbiology 56: 650-663. Miller,C., Ausrin,H., Posorske,L., and Gonzlez,J. (1988) Characteristics of an immobilized lipase for the commercial synthesis of ester. Journal of the American Oil Chemists'' Society 65: 927-931. Mehnaz, Samina, Deeba N. Baig, and Lazarovits (2010) Genetic and Phenotypic Divesity of Plant Growth Promoting Rhizobacteria Isolated from Sugarcane Plants Growing in Pakistan. Journal of Microbiology and Biotechnology 20(12) :1614.-1623. Montesinos, J. L., Obradors, N., Gordillo, M. A., Valero, F., Lafuente, J., and Sola, C. (1996) Effect of nitrogen sources in batch and continuous cultures to lipase production by Candida rugosa. Applied Biochemistry and   Biotechnology 59: 25–37. Muralidhar, R.V., Chirumamila, R.R., Marchant, R., and Nigam, P. (2001) A response surface approach for the comparison of lipase production by candidacylindracea using two different carbon sources. Biochemical Engineering Journal 9: 17–23. Matsumae, H. and Shibatani, T. (1994) Purification and characterization of the lipase from Serratia marcescens Sr41 8000 responsible for asymmetric hydrolysis of 3-phenylglycidic acid esters. Journal of Fermentation and Bioengineerin 77: 152−158. Mohanan, S., Maruthamuthu, S., Muthukumar, N., Rajesekar, N., and Palaniswamy, A. (2007) Biodegradation of palmarosa oil (green oil) by Serratia marcescens.International journal of Environmental Science and Technology 4(2):279-283 Nishio, T., Chikano, T., and Kamimura, M. (1987)Purification and some properties of lipase produced by Pseudomonas fragi 22.39B.Agricultural Biology and Chemistry 51: 181−186. Nielsen, A.T., Liu, W.-T., Filipe, C., Grady, L., Molin, S., and Stahl, D.A. (1999)Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor.Applied and Environmental Microbiology 65: 1251-1258. Odbio, F.J.C., Okereke, U.O. and Oyeka, C.A. (1995) Influence of coutureconditions on the production of lipase of Hendersonula toruloidea.Bioresource Technology 54: 81-83. Palekar, A., Vasudevan, A., and Yan, P.T. S. (2000) Purification of lipase: a review. Biocat.Biotransf. 18: 177–200. Pal, N., Das, S., and Kundu, A. K. (1978) Influence of culture and nutritional conditions on the production of lipase by submerged culture of Aspergillus niger. Journal of Fermentation Technology 56: 593. Pedrosa, F.O., Yates, M.G., Vitorino, J.C., Steffens, M.B.R., Souza, E.M.,Machado, H.B., Tarzia, A., Rrinhold, B., Hurek, T., Fendrik, I.(1985) Strain specific chemotaxis of Azospirillum spp. Journal of Bacteriology 162(1): 190- 195. Regan, J.M., Harrington, G.W., and Noguera, D.R.(2002) Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Applied and Environmental Microbiology 68(1): 74. Rubin, B. (1994)Grease pit chemistry exposed. Nature Structural & Molecular Biology 1: 568-572. Sitajer, H. and Maliszewska, I. (1988) Production of exogenous lipase by bacteria, fungi and acitomycetes. Enzyme and Microbial Technology 10: 492–497. Srivastava, A. and Prasad, R. (2000) Triglycerides-based diesel fuels. renewable & sustainable energy reviews 4: 111-133. Shimada,Y., Watanabe, Y., Samujawa, T., Sugihara, A., Noda, H., Fukuda, H., and Tominaga, Y. (1999) Conversion of vegetable oil to biodoesel using immobilized Candida antarctica lipase. Ibid.76: 789-793. Vadehra, D.V., and Harmon, L. G. (1969) Factors affecting production of Staphylococcal lipase. Journal of Applied Bacteriology 32: 147. Viel, M., Sayag, D.A., and Andre, L. (1987) Optimization of in-vessel composting through heat recovery. Biological Wastes 20:167-185. Watatnabe, N., Ota, Y.Y., Minoda, and Yamada, K. (1977) Studies on alkaline lipase from Pseudomonas species.Part I. Isolation and identification of alkaline lipase producing microorganisms, cultural conditions and some properties of the crude enzymes. Agricultural Biology and Chemistry 41: 365. Wang,C-S. and Hartsuk, J.A. (1993) Bile salt-activated lipase. Amultiple function lipolytic enzyme. Biochimica et Biophysica Acta 1166: 1-19. Wang, Y.-X., Srivastava, K. C., Shen, G. Y., and Wang, H. Y. (1995) Thermostable alkaline lipase from a newly isolate thermophilic Bacillus, strain A30-1 (ATCC 53841). Journal of Fermentation and Bioengineering 79:433−438 (1995). Wu, X.Y., Jaaskelainen, S., and Linko, Y.Y. (1996) Purification and partial characterization of Rhizomucor miehei lipase for ester synthesis. Applied Biochemistry and Biotechnology 59: 145−157. Winkler, U.K. and Stuckmann, M. (1979) Glycogen hyaluronate and some other polysaccharides greatly enhance the formation of exolopase by Serratia marcescens.Journal of Bacteriology 138:663-670. Wilson, S.C. and Jones, K.C. (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environmental Pollution 81(3):229-249.   Yeh, D.H., Pannell, K.D., and Pavlostathis, S.G. (1998) Toxicity and Biodegradation screening of nonionic surfactants using sediment-derived methanogenic consortia. Water Science and Technology 38(7):55-62.
摘要: 本研究之目的為從不同環境中採集含油脂之廢水,從中分離篩選出具有油脂分解能力之菌株。首先利用特定培養基進行培養篩選,一共分離出32株具分泌脂肪酵素能力的細菌菌株。利用培養在特殊培養基上所生成白色沉澱環大小來初步判斷其分解能力差別,進行兩次篩選後總共挑出15株菌進行分類鑑定。其中能力最強者為編號S-6,次強者為編號H-4;第三強者為編號G-3,進一步將該菌株分離純化及菌種鑑定,根據16S rDNA sequencing序列結果得知菌名分別依序為Serratia marcescens;Aeromonas hydrophila ; Aeromonas veronii strain。 本研究將所分離菌株與自行由菌種中心購買已知具油脂分解能力之純菌株Azospirillum brasilense 14325進行比較,探討菌株之基本性質及進行脂肪酵素活性測試。Serratia marcescens在固態培養基上白色沉澱環約0.6 cm;Azospirillum brasilense 14325白色沉澱環形成速度緩慢,形狀多僅只呈現點狀分泌。Serratia marcescens在液態培養時所測得之脂肪酵素活性為(71 U);Azospirillum brasilense 14235之脂肪酵素活性為(0 U)。 進一步探討Serratia marcescens在不同生長條件下之脂肪酵素分解變化,結果顯示此菌株培養在6% Tween 80濃度下,其脂肪酵素活性(506 U)為最佳。pH 值不同時,Serratia marcescens於pH 8 脂肪酵素活性最佳 (667 U)。溫度不同時,於30 ℃培養下之脂肪酵素活性最佳(667 U)。最後將6% Tween 80改用6% 沙拉油取代,發現其在第3天、第5天、第7天之油脂降解率分別為7.43%、14.56%、29.41%。推測將Serratia marcescens應用到廢食用油降解時,將可以得到不錯的降解效果。
The objective of this study was to isolate and identify oil-degrading bacteria from different wastewater environments. First of all, a selective media was used as the screening tool for lipase-secreting bacteria, and a total of 32 strains were isolated. The lipase activity of these strains was identified by detecting the clear zone surrounding the bacterial colony when incubated on the specific media plate. After two separated screening processes, 15 strains were selected for detailed study. The strain which have the strongest ability of lipase production was numbered as strain S-6, followed by strain H-4 and G-3. Based on the 16S rDNA sequence analysis results, these strains were identified as Serratia marcescens, Aeromonas hydrophila and Aeromonas veronii, respectively. In this study, the growth characteristics and lipase activity of the isolated strains, were compared with Azospirillum brasilense 14325 (purchased from Bioresource Culture Research Center), one of the lipolytic strains reported in the reference. The size of clear zone produced by Serratia marcescens on the solid medium was about 0.6 cm. But the clear zone was formed slowly by Azospirillum brasilense 14325, and had only pinpoint-like shape of secretion observed. Llipase activity of Serratia marcescens and Azospirillum brasilense 14235 when cultured in liquid medium were (71 U) and (0 U), respectively. Further examination of the lipase activity of Serratia marcescens under different growth conditions showed that the best lipase activity (506 U) could be obtained when this strain was incubated under a concentration of 6% Tween 80, pH8 and 30oC. Finally, when the use of 6% Tween 80 was replaced by 6% salad oil, the oil decomposing rate were 7.43% (3 days), 14.56% (5 days), 29.41% (7 days). We speculated that Serratia marcescens strain may have good degradation effects when applied to the processing of waste edible oil.
URI: http://hdl.handle.net/11455/5869
其他識別: U0005-3007201214353100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3007201214353100
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.