Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5871
標題: 活性碳高分子複合薄膜之製備、結構特性與水處理操作性能之研究
The preparation, structural properties and operation characteristics of activated carbon polymer composite membranes for water treatment
作者: 黃立綸
Hwang, Li-Luen
關鍵字: 活性碳
Activated carbon
複合薄膜
滲透通量
腐質酸
過濾反洗
積垢機制
Composite membrane
Permeation flux
Humic acid
Fouling mechanisms
出版社: 環境工程學系所
引用: Ali, I. and Gupta, V. K., 2007. Advances in water treatment by adsorption technology. Nature Protocols, 1 (6), 2661-2667. Arthanareeswaran, G., Sriyamuna Devi, T. K. and Raajenthiren, M., 2008. Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Separation and Purification Technology, 64 (1), 38-47. Arthanareeswaran, G. and Thanikaivelan, P., 2010. Fabrication of cellulose acetate-zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis. Separation and Purification Technology, 74 (2), 230-235. Ayhan, D., 2009. Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review. Journal of Hazardous Materials, 167 (1-3), 1-9. Ba, C., Ladner, D. A. and Economy, J., 2010. Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane. Journal of Membrane Science, 347 (1-2), 250-259. Baker, R.W., 2004. Membrane Technology and Applications: Chapter 1 overview of membrane science and technology. John Wiley and Sons, 1-14. Barth, C., Gonçalves, M. C., Pires, A. T. N., Roeder, J. and Wolf, B. A., 2000. Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science, 169 (2), 287-299. Bottino, A., Capannelli, G. and Comite, A., 2002. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination, 146 (1-3), 35-40. Bowen, W. R., Doneva, T. A. and Yin, H. B., 2002. Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes. Journal of Membrane Science, 206 (1-2), 417-429. Buonomenna, M.G., Macchi, P., Davoli, M. and Drioli, E., 2007. Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European Polymer Journal, 43 (4), 1557-1572. Cao, X., Ma, J., Shi, X. and Ren, Z., 2006. Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Applied Surface Science, 253 (4), 2003-2010. Caro, J., 1998. Basic Principles of Membrane Technology. Zeitschrift fur Physikalische Chemie, 203 (Part12), 263-263. Celik, E., Park, H., Choi, H. and Choi, H., 2011. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Research, 45 (1), 274-282. Chakrabarty, B., Ghoshal, A.K. and Purkait, M. K., 2008. Effect of molecular weight of PEG on membrane morphology and transport properties. Journal of Membrane Science, 309 (1-2), 209-221. Chaturvedi, B. K., Ghosh, A. K., Ramachandhran, V., Trivedi, M. K., Hanra, M. S. and Misra, B. M., 2001. Preparation, characterization and performance of polyethersulfone ultrafiltration membranes. Desalination, 133 (1), 31-40. Cho, J., Amy, G., Pellegrino, J. and Yoon, Y., 1998. Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization. Desalination, 118 (1-3), 101-108. Choi, J. H., Jegal, J. and Kim, W. N., 2006. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. Journal of Membrane Science, 284 (1-2), 406-415. Costa, A. R. and Pinho, M. N., 2005. Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions. Journal of Membrane Science, 255 (1-2), 49-56. Cuperus, F. P. and Smolders, C. A., 1991. Characterization of UF membranes: Membrane characteristics and characterization techniques. Advances in Colloid and Interface Science, 34, 135-173. Di Vona, M. L., D''Epifanio, A., Marani, D., Trombetta, M., Traversa, E. and Licoccia, S., 2006. SPEEK/PPSU-based organic-inorganic membranes: proton conducting electrolytes in anhydrous and wet environments. Journal of Membrane Science, 279 (1-2), 186-191. Fu, X., Maruyama, T., Sotani, T. and Matsuyama, H., 2008. Effect of surface morphology on membrane fouling by humic acid with the use of cellulose acetate butyrate hollow fiber membranes. Journal of Membrane Science, 320 (1-2), 483-491. Ghosh, K. and Schnitzer, M., 1980. Macromolecular Structures of Humic Substances. Soil Science, 129 (5), 266-276. Gwon, E. M., Yu, M. J., Oh, H. K. and Ylee, Y. H., 2003. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater. Water Research, 37 (12), 2989-97. Han, M. J. and Nam, S. T., 2002. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. Journal of Membrane Science, 202 (1-2), 55-61. Hoek, E. M. V., Ghosh, A. K., Huang, X., Liong, M. and Zink, J. I., 2011. Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes. Desalination, 283(1), 89-99. Hwang, L. L., Chen, J. C. and Wey, M. Y., 2013. The properties and filtration efficiency of activated carbon polymer composite membranes for the removal of humic acid. Desalination, 313(15), 166-175. Hwang, L. L., Tseng, H. H. and Chen, J. C., 2011. Fabrication of polyphenylsulfone/polyetherimide blend membranes for ultrafiltration applications: The effects of blending ratio on membrane properties and humic acid removal performance. Journal of Membrane Science, 384 (1-2), 72-81. Idris, A., Mat Zain, N. and Noordin, M.Y., 2007. Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination, 207 (1-3), 324-339. Jian, P., Yahui, H., Yang, W. and Linlin, L., 2006. Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. Journal of Membrane Science, 284 (1-2), 9-16. Jucker, C. and Clark, M. M., 1994. Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes. Journal of Membrane Science, 97, 37-52. Jung, Y. J., Kiso, Y., Yamada, T., Shibata, T. and Lee, T. G., 2006. Chemical cleaning of reverse osmosis membranes used for treating wastewater from a rolling mill process. Desalination, 190 (1-3), 181-188. Katsoufidou, K., Yiantsios, S. G. and Karabelas, A. J., 2005. A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling. Journal of Membrane Science, 266 (1-2), 40-50. Khayet, M., Villaluenga, J. P. G., Valentin, J. L., López Manchado, M. A., Mengual, J. I. and Seoane, B., 2005. Filled poly(2,6-dimethyl-1,4- phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: characterization and application in pervaporation. Polymer, 46 (23), 9881-9891. Khorasani, M. T. and Shorgashti, S., 2006. Fabrication of microporous thermoplastic polyurethane for use as small-diameter vascular graft material. I. Phase-inversion method. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 76B (1), 41-48. Kim, I. C. and Lee, K. H., 2004. Effect of poly(ethylene glycol) 200 on the formation of a polyetherimide asymmetric membrane and its performance in aqueous solvent mixture permeation. Journal of Membrane Science, 230 (1-2), 183-188. Kim, I. C., Yun, H. G. and Lee, K. H., 2002. Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process. Journal of Membrane Science, 199 (1-2), 75-84. Koltuniewicz, A. B., Field, R. W. and Arnot, T. C., 1995. Cross-flow and dead-end microfiltration of oily-water emulsion. Part I: Experimental study and analysis of flux decline. Journal of Membrane Science, 102(15), 193-207. Lafreniere, L. Y., Talbot, F. D. F., Matsuura, T. and Sourirajan, S., 1987. Effect of poly(vinylpyrrolidone) additive on the performance of poly(ether sulfone) ultrafiltration membranes. Industrial & Engineering Chemistry Research, 26 (11), 2385-2389. Lai, J. Y., Liu, M. J. and Lee, K. R., 1994. Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air. Journal of Membrane Science, 86 (1-2), 103-118. Lau, W. J., Ismail, A. F., Misdan, N. and Kassim, M. A., 2012. A recent progress in thin film composite membrane: A review. Desalination, 287 (9), 190-199. Li, J. B., Zhu, J. W. and Zheng, M. S., 2007. Morphologies and properties of poly(phthalazinone ether sulfone ketone) matrix ultrafiltration membranes with entrapped TiO2 nanoparticles. Journal of Applied Polymer Science, 103 (6), 3623-3629. Liao, C., Zhao, J., Yu, P., Tong, H. and Luo, Y., 2010. Synthesis and characterization of SBA-15/poly (vinylidene fluoride) (PVDF) hybrid membrane. Desalination, 260 (1–3), 147-152. Lin, C. F., Huang, Y. J. and Hao, O. J., 1999. Ultrafiltration processes for removing humic substances: effect of molecular weight fractions and PAC treatment. Water Research, 33 (5), 1252-1264. Listiarini, K., Sun, D. D. and Leckie, J. O., 2009. Organic fouling of nanofiltration membranes: Evaluating the effects of humic acid, calcium, alum coagulant and their combinations on the specific cake resistance. Journal of Membrane Science, 332 (1-2), 56-62. Ma, Y., Shi, F., Ma, J., Wu, M., Zhang, J. and Gao, C., 2011. Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes. Desalination, 272 (1-3), 51-58. Manning, T. J., Bennett, T. and Milton, D., 2000. Aggregation studies of humic acid using multiangle laser light scattering. Science of The Total Environment, 257 (2-3), 171-176. Matsuyama, H., Teramoto, M. and Uesaka, T., 1997. Membrane formation and structure development by dry-cast process. Journal of Membrane Science, 135 (2), 271-288. Maximous, N., Nakhla, G., Wong, K. and Wan, W., 2010. Optimization of Al2O3/PES membranes for wastewater filtration. Separation and Purification Technology, 73 (2), 294-301. Mousa, H. A., 2007. Investigation of UF membranes fouling by humic acid. Desalination, 217 (1-3), 38-51. Nagendran, A. and Mohan, D. R., 2008. Cellulose acetate and polyetherimide blend ultrafiltration membranes: II. Effect of additive. Polymers for Advanced Technologies, 19, 24-35. Nguyen, Q. T., Gref, R., Clément, R. and Lenda, H., 1993. Differential permeation - Part I: A method for the study of solvent diffusion through membranes. Colloid and Polymer Science, 271 (12), 1134-1142. Nyström, M., Ruohomäki, K. and Kaipia, L., 1996. Humic acid as a fouling agent in filtration. Desalination, 106 (1-3), 79-87. Nystr, M., Ruohomi, K. and Kaipia, L., 1996. Humic acid as a fouling agent in filtration. Desalination, 106 (1-3), 79-87. Ozdemir, S. S., Buonomenna, M. G. and Drioli, E., 2006. Catalytic polymeric membranes: Preparation and application. Applied Catalysis A: General, 307 (2), 167-183. Pourjafar, S., Rahimpour, A. and Jahanshahi, M., 2012. Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO2 nanoparticles for better performance and surface properties. Journal of Industrial and Engineering Chemistry, 18 (4), 1398-1405. Rafik, M., Mas, A., Guimon, M. F., Guimon, C., Elharfi, A. and Schué, F., 2003. Plasma-modified poly(vinyl alcohol) membranes for the dehydrationof ethanol. Polymer International, 52 (7), 1222-1229. Rahimpour, A., Jahanshahi, M., Rajaeian, B. and Rahimnejad, M., 2011. TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination, 278 (1-3), 343-353. Rahimpour, A. and Madaeni, S. S., 2007. Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties. Journal of Membrane Science, 305 (1-2), 299-312. Rahimpour, A., Madaeni, S. S., Amirinejad, M., Mansourpanah, Y. and Zereshki, S., 2009. The effect of heat treatment of PES and PVDF ultrafiltration membranes on morphology and performance for milk filtration. Journal of Membrane Science, 330 (1-2), 189-204. Rajesh, S., Senthilkumar, S., Jayalakshmi, A., Nirmala, M. T. and Ismail, A. F., Mohan, D., 2013. Preparation and performance evaluation of poly (amide–imide) and TiO2 nanoparticles impregnated polysulfone nanofiltration membranes in the removal of humic substances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 418 (5), 92-104. Ramamoorthy, M. and Raju, M. D., 2001. Cellulose Acetate and Sulfonated Polysulfone Blend Ultrafiltration Membranes. Part III. Application Studies. Industrial & Engineering Chemistry Research, 40 (22), 4815-4820. Razmjou, A., Mansouri, J. and Chen, V., 2011. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. Journal of Membrane Science, 378 (1-2), 73-84. Reddy, A. V. R., Mohan, D. J., Bhattacharya, A., Shah, V. J. and Ghosh, P. K., 2003. Surface modification of ultrafiltration membranes by preadsorption of a negatively charged polymer: I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties. Journal of Membrane Science, 214 (2), 211-221. Shen, J. N., Ruan, H. M., Wu, L. G. and Gao, C. J., 2011. Preparation and characterization of PES-SiO2 organic-inorganic composite ultrafiltration membrane for raw water pretreatment. Chemical Engineering Journal, 168 (3), 1272-1278. Shirazi, S., Lin, C. J. and Chen, D., 2010. Inorganic fouling of pressure-driven membrane processes : A critical review. Desalination, 250 (1), 236-248. Shon, H. K., Vigneswaran, S., Kim, I. S., Cho, J. and Ngo, H. H., 2006. Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater. Journal of Membrane Science, 278 (1-2), 232-238. Sihombing, R., Greenwood, P. F., Wilson, M. A. and Hanna, J. V., 1996. Composition of size exclusion fractions of swamp water humic and fulvic acids as measured by solid state NMR and pyrolysis-gas chromatography-mass spectrometry. Organic Geochemistry, 24 (8), 859-873. Sikder, J., Pereira, C., Palchoudhury, S., Vohra, K., Basumatary, D. and Pal, P., 2009. Synthesis and characterization of cellulose acetate-polysulfone blend microfiltration membrane for separation of microbial cells from lactic acid fermentation broth. Desalination, 249 (2), 802-808. Sivakumar, M., Malaisamy, R., Sajitha, C. J., Mohan, D., Mohan, V. and Rangarajan, R., 2000. Preparation and performance of cellulose acetate–polyurethane blend membranes and their applications-II. Journal of Membrane Science, 169 (2), 215-228. Smolders, C. A., Reuvers, A. J., Boom, R. M. and Wienk, I. M., 1992. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. Journal of Membrane Science, 73 (2-3), 259-275. Song, H., Shao, J., He, Y., Liu, B. and Zhong, X., 2012. Natural organic matter removal and flux decline with PEG–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. Journal of Membrane Science, 405-406 (1), 48-56. Song, M. K., Park, S., Alamgir, F. M., Cho, J. and Liu, M. L., 2011. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials Science & Engineering R-Reports, 72 (11), 203-252. Srinivasa Rao, P., Smitha, B., Sridhar, S. and Krishnaiah, A., 2006. Effect of blending ratio on pervaporative separation of 1,4-dioxane/water mixtures through PVA-PEI membranes. Vacuum, 81 (3), 299-306. Su, Y., Li, C., Zhao, W., Shi, Q., Wang, H., Jiang, Z. and Zhu, S., 2008. Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties. Journal of Membrane Science, 322(1), 171-177. Taurozzi, J. S., Arul, H., Bosak, V. Z., Burban, A. F., Voice, T. C., Bruening, M. L. and Tarabara, V. V., 2008. Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. Journal of Membrane Science, 325 (1), 58-68. Vatanpour, V., Madaeni, S. S., Khataee, A. R., Salehi, E., Zinadini, S. and Monfared, H. A., 2012. TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination, 292 (16), 19-29. Walther, H. J., Faust, S. D. and Aly, O. M., 1988. Adsorption processes for water treatment. Acta Hydrochimica Hydrobiologica, 16 (6), 572-572. Wang, D. M., Lin, F. C., Chiang, J. C. and Lai, J. Y., 1998. Control of the porosity of asymmetric TPX membranes. Journal of Membrane Science, 141 (1), 1-12. Wang, T., Wang, Y. Q., Su, Y. L. and Jiang, Z. Y., 2006. Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer. Journal of Membrane Science, 280(1-2), 343-350. Wei, Y. M., Xu, Z. L., Yang, X. T. and Liu, H. L., 2006. Mathematical calculation of binodal curves of a polymer/solvent/nonsolvent system in the phase inversion process. Desalination, 192 (1-3), 91-104. Wu, G., Gan, S., Cui, L. and Xu, Y., 2008. Preparation and characterization of PES/TiO2 composite membranes. Applied Surface Science, 254 (21), 7080-7086. Xu, Z. L., Chung, T. S., Loh, K. C. and Lim, B. C., 1999. Polymeric asymmetric membranes made from polyetherimide/polybenzimi dazole/poly(ethyleneglycol)(PEI/PBI/PEG) for oil-surfactant-water separation. Journal of Membrane Science, 158 (1-2), 41-53. Yamamura, H., Kimura, K. and Watanabe, Y., 2007. Mechanism involved in the evolution of physically irreversible fouling in microfiltration and ultrafiltration membranes used for drinking water treatment. Environmental Science and Technology, 41 (19), 6789-94. Yan, L., Li, Y. S., Xiang, C. B. and Xianda, S., 2006. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. Journal of Membrane Science, 276 (1-2), 162-167. Yanagishita, H., Nakane, T. and Yoshitome, H., 1994. Selection criteria for solvent and gelation medium in the phase inversion process. Journal of Membrane Science, 89 (3), 215-221. Yang, J. K. and Lee, S. M., 2006. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis. Chemosphere, 63 (10), 1677-84. Yang, Y., Zhang, H., Wang, P. and Zheng, Q., Li, J., 2007. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. Journal of Membrane Science, 288 (1-2), 231-238. Yiantsios, S. G. and Karabelas, A. J., 2001. An experimental study of humid acid and powdered activated carbon deposition on UF membranes and their removal by backwashing. Desalination, 140 (2), 195-209. Ying, Z. and Ping, G., 2006. Effect of powdered activated carbon dosage on retarding membrane fouling in MBR. Separation and Purification Technology, 52 (1), 154-160. Yoon, S. H. and Kim, J. S., 2000. Effect of the origin of humic acids on nanofilter fouling in drinking water production. Chemical Engineering Science, 55 (21), 5171-5175. Young, T. H. and Chen, L. W., 1991. A diffusion-controlled model for wet-casting membrane formation. Journal of Membrane Science, 59(2), 169-181. Yu, L. Y., Xu, Z. L., Shen, H. M. and Yang, H., 2009. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. Journal of Membrane Science, 337 (1-2), 257-265. Yuan, W. and Zydney, A. L., 1999. Humic acid fouling during microfiltration. Journal of Membrane Science, 157 (1), 1-12. Zhao, Y. H., Wee, K. H. and Bai, R., 2010. Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. Journal of Membrane Science, 362(1-2), 326-333. Zularisam, A. W., Ismail, A. F., Salim, M. R., Sakinah, M. and Ozaki, H., 2007. The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes. Desalination, 212 (1-3), 191-208. Zydney, A. L. and Colton, C. K., 1986. A concentration polarization model for the filtrate flux in cross flow microfiltration of particulate suspensions. Chemical Engineering Communications, 47(1-3), 1-21. 王志仁, 2001. 薄膜處理技術去除天然有機物之研究. 國立台北科技大學環境規劃與管理研究所, 碩士論文. 王偉修, 2004. MF薄膜阻塞現象之探討. 國立成功大學環境工程學系, 碩士論文. 吳憶媚, 2000. 陶瓷薄膜回收處理廢潤滑油之評估. 國立台灣大學化學工程學研究所, 碩士論文. 呂維明,呂文芳, 1995. 過濾技術. 高立圖書有限公司. 李權家, 2006. 管狀無機膜製備及其於化學機械研磨廢水處理之應用. 國立中山大學環境工程研究所, 碩士論文. 林何印, 2005. 超濾與逆滲透薄膜程序處理及回收工業廢水之研究. 國立中央大學環境工程研究所, 碩士論文. 林官穎, 2001. Gelation 對PMMA成膜機制的影響. 中原大學化工系, 碩士論文. 林芳慶, 1997. 薄膜結構之控制:非溶劑添加物對成膜的影響. 中原大學化學工程學系, 博士論文. 邱富源, 2001. 奈米過濾用高分子薄膜性能之探討. 淡江大學化學工程學系, 碩士論文. 范舒晴, 2004. 聚醯胺與聚醯亞胺膜於滲透蒸發與蒸氣揮發之研究. 中原大學化學工程學系, 博士論文. 郭文正, 1998. 薄膜分離. 高立圖書有限公司. 黃冠勛, 2001. 探討添加劑對巨型孔洞形成之影響. 中原大學化工系, 碩士論文. 經濟部工業局, 1993. 廢水薄膜處理技術應用與推廣手冊. 工業污染防治技術手冊. 蔡杰裕, 2002. 鈀膜反應器進行乙醇脫氫反應之研究. 逢甲大學化學工程學系, 碩士論文.
摘要: 薄膜技術已廣泛應用於廢水高級處理與水回收處理程序,為改善傳統單一高分子薄膜於應用操作上所面臨問題,不同高分子混合薄膜與複合薄膜已逐漸發展。高分子組成比例和複合材料含量影響混合薄膜和複合薄膜之孔洞分佈、孔洞大小、孔隙率、親/疏水性質、粗糙度、以及孔洞結構,並會影響混合薄膜和複合薄膜之過濾特性、反洗效果以及積垢特性,因此本研究為改善單一有機高分子薄膜應用在水和廢水處理中之過濾效率和滲透性,創新製備活性碳高分子複合薄膜,探討薄膜表面和結構孔洞分佈以及表面親水性和粗糙度對純水通量、滲透通量和腐植酸去除效率之影響,藉由場發式電子顯微鏡、原子力學顯微鏡及接觸角分析儀,分別量測活性碳高分子複合薄膜的表面型態、表面粗糙度、及親疏水性特性,並探討活性碳複合薄膜過濾腐植酸之操作特性、積垢機制、及反洗效果,製備出同時具有高過濾通量、去除效率和反洗通量回復率之複合薄膜,以利後續水處理與回收之應用發展。 本研究利用濕式相轉換方法製備聚苯砜(Polyphenylsulfone, PPSU)/聚醚亞醯胺(Polyetherimide, PEI)/聚乙二醇(Polyethlene glycol, PEG)/活性碳(Activated carbon, AC)複合薄膜,混合不同比例之親水性PEI和PEG以及活性碳微粒進行PPSU高分子薄膜改質,可明顯增加高分子複合薄膜之結構孔隙率、表面親水性、化學特性和表面粗糙度,進而提高過濾通量,有效減少高分子複合薄膜本身過濾阻抗。此外,增加活性碳含量,可以有效提高AC/PPSU/PEI/PEG複合薄膜過濾通量和滲透率,而增加親水性多孔形成劑PEG之混合比例,有助於提高AC/PPSU/PEI/PEG複合薄膜表面親水性和孔隙率,有效減少複合薄膜本身阻抗。本研究並測試不同過濾壓力、不同反洗壓力和反洗頻率,探討活性碳複合薄膜之過濾特性、反洗效率和積垢機制,證實活性碳複合薄膜能有效增加純水通量、減緩薄膜積垢與滲透通量衰減、提高薄膜反洗效率與通量回復率,降低薄膜不可逆積垢的形成,並且能防止高分子複合薄膜發生形變。
The membrane techniques have been widely applied in the advanced wastewater treatments and water reuse processes. To overcome the problems and constraints on the application of single organic membranes, the development of different polymer blend membranes and composite membranes have become a mainstream of membrane technology nowadays. The polymer compositions and materials of the polymer composite membranes significantly affect the pore distributions, pore size, porosity, hydrophilicity and hydrophobicity, surface roughness, and structure morphology. These characteristics can also affect the filtration properties, backwashing efficiencies, and fouling mechanisms of the blend and composite membranes. Therefore, this study tries to prepare the novel activated carbon (AC) polymer composite membranes and explores their characteristics of the pore distribution, structure morphology, hydrophilicity, and roughness as well as their performances on the pure water flux, permeation flux, and humic acid (HAs) removal efficiency. The surface morphology, roughness, hydrophilicity, and hydrophobicity of the AC composite membranes were measured by the field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and contact angle analyzer. The filtration properties, fouling mechanisms and backwashing efficiencies of the AC polymer composite membranes were also investigated. The AC polymer composite membranes with high filtration flux, removal efficiency, and flux recovery rates were successfully developed for the future application in the wastewater treatment and water reuse processes. The polyphenylsulfone (PPSU)/polyetherimide (PEI)/polyethylene glycol (PEG)/activated carbon (AC) composite membranes were prepared by using the wet phase inversion method, and modified by the addition of different ratios of hydrophilic PEI, PEG, and AC particles. The structure porosity, hydrophilicity, chemical properties, and surface roughness of the AC composite membranes were significantly improved, and the filtration flux was increased and the intrinsic membrane resistances were decreased. With the increased contents of AC particles, the filtration flux and permeability of the AC/PPSU/PEI/PEG composite membranes were improved. The addition of hydrophilic pore-formation agent PEG helped to increase the surface hydrophilicity and porosity as well as decrease the intrinsic membrane resistances of the AC/PPSU/PEI/PEG composite membranes. The filtration performance, backwashing properties and fouling mechanisms of the AC composite membranes were also investigated by operating at different filtration pressures, backwashing pressures, and backwashing frequency. The results illustrate that the AC polymer composite membranes can effectively increase the pure water flux (PWF), mitigate the decline of permeation flux (PF), increase the backwashing efficiency and flux recovery rate (FRR), reduce the formation of irreversible fouling, and prevent the polymer composite membranes deformed.
URI: http://hdl.handle.net/11455/5871
其他識別: U0005-2008201301424500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201301424500
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.