Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5876
標題: 滲出水返送對一般廢棄物衛生掩埋場操作的影響
The Effect of Leachate Recirculation on the Operation of Municipal Solid Waste Landfill Systems
作者: 黃富世
Huang, Fu-Shih
關鍵字: 一般固體廢棄物
Municipal Solid Waste (MSW)
生物反應器掩埋場
滲出水
過氧化氫
氣泡式呼吸儀
Bioreactor Landfill
Leachate
Hydrogen Peroxide
Bubble Respirometer
出版社: 環境工程學系所
引用: 行政院環境保護署(1999),「中華民國臺灣地區環境保護統計年報」,臺北市。 行政院環境保護署(2001),「封閉垃圾場復育綠美化執行成效評估;EPA-89 -Z102-02-100」,國立臺北科技大學(張添晉),臺北市。 行政院環境保護署(2005 a),「提昇一般廢棄物衛生掩埋場工程施工、營運管理及封閉復育成效工作;EPA-93-Z102-02- 100」,國立中興大學環境工程學系(謝永旭等),臺北市。 行政院環境保護署(2005 b),「垃圾全分類零廢棄方案第一階段執行計畫」,臺北市。 行政院環境保護署(2006),「一般廢棄物全分類零廢棄推動計畫」,臺北市。 行政院環境保護署(2007 a),「一般廢棄物資源循環推動計畫」,臺北市。 行政院環境保護署(2007 b),「垃圾掩埋場總體檢委託專案工作計畫;EPA-95 -Z102-02-201」,惠元環境資源股份有限公司,臺北市。 行政院環境保護署(2009 a),「中華民國臺灣地區環境保護統計年報」,臺北市。 行政院環境保護署(2009 b),「提昇環保設施處理一般廢棄物再生技術委託專案工作計畫;EPA-97-Z102-02-202」,尚竑工程顧問有限公司,臺北市。 行政院環境保護署(2009 c),「一般廢棄物垃圾組成採樣及分析工作;EPA- 97-Z102-02-201」,私立逢甲大學(江康鈺等),臺北市。 行政院環境保護署(2013 a.3.15),「環境品質資料倉儲系統;http://edw. epa.gov.tw/topicWaste.aspx」,臺北市。 行政院環境保護署(2013 b.3.15),「統計資料庫;http://210.69.101.110 /epa/stmain.jsp? sys=100」,臺北市。 李季眉等(1997),「環境微生物」,中華民國環境工程學會印行,臺灣。 江舟峰(1998),「吸儀評估染整廢水高溫好氧處理可行性研究」,技術報告,朝陽科技大學,臺中市。 李王永泉、施明倫譯(1998),「固體廢棄物管理」,滄海書局,臺中市。 阮國棟、吳婉怡(2006), 「新型生物反應槽掩埋場防止滲出水污染」,工業污染防治季刊,第99期,pp.185–194。 周奮興,廖文彬、王興國(1998),「以通q室監測封閉掩埋場甲烷排放量之研究」,第十三屆廢棄物處理技術研討會論文集,pp.534,高雄。 洪肇嘉(1997)「臺灣地區溫室氣體排放統計之研究回顧」,技術報告,國立雲林科技大學環安所,雲林縣。 高思懷、徐孟頫(1998),「封閉掩埋場之復育工程」,第十三屆廢棄物處理技術研討會,pp. 500-507,臺灣。 陳文欽、鄭幸雄(1997),「呼吸儀用於石化廢水之特性研究」,中國環境工程學刊,第七卷,第二期,pp. 203。 游以德、楊明德、余惠華(1998),「封閉掩埋場之復育工程」,第一屆廢棄物清理實務研討會論文集,臺灣。 章裕民(2005),「廢棄物處理(第三版)」,新文京開發出版有限公司,臺灣,pp. 378–379。 張乃彬(1998),「固體廢棄物處理」,三民書局股份有限公司,臺灣,pp. 148–149。 蘇世昌(1999),“受多環芳香族碳氫化合物-萘污染環境之生物復育可行性研究”,碩士論文,國立中興大學環境工程學系,臺中市。 臺灣威立雅環境服務股份有限公司(2007),「國內大型掩埋場沼氣處理發電工作現況」,山豬窟衛生掩埋場監督委員會,臺北市。 Berge, N.D., Reinhart, D.R., and Townsend, T.G., (2005). The fate of nitrogen in bioreactor landfills. Critical Reviews in Environmental Science and Technology. Vol.35, pp.365–399. Barlaz, M., Ham, R., and Schaefer, D., (1990). Methane production from municipal refuse: a review of enhancement techniques and microbial dynamics. Critical Review in Environmental Control. Vol.19, pp.557–584. Bender M. and Conrad R., (1995). Effect of CH4 concentration and soil conditions on the induction of CH4 oxidation activity. Soil Biological and Biochemical. Vol.27 (12), pp. 1517–1527. Benson, C., Barlaz, M., Lane, D., and Rawe, J., (2007). Practice review of five bioreactor/recirculation landfills. Waste Management. Vol.27, pp.13–29. Borglin, S.E., Hazen, T.C., Oldenburg, C.M., and Zawislanski, P.T., (2004). Comparison of aerobic and anaerobic biotreatment of municipal solidwaste. Journal of the Air and Waste Management Association. Vol.54, pp.815–822. Brown, S. C., Grady C. P. L., and Tabak H. H., (1990). Biodegradation kinetics of substituted phenolics: demonstration of a protocol based on electrolytic respirometry. Water Research. Vol.24, pp.853–861. Chian, E.S.K., (1977). Stability of organic matter in landfill leachates. Water Research. Vol. 11, pp.225–232. Christenson, T.H., Cossu, R., and Stegmemn, R., (1989). Sanitary landfill process-Technology and environmental impact. 1st Ed., Acadmic Press, London. pp.29–49. Chugh, S., Clarke, W., Pullammanappallil, P., and Rudolph, V., (1998). Effect of recirculated leachate volume on MSW degradation. Waste Management Research. Vol.16 (6), pp.564–573. Cossu, R., Raga, R., and Rossetti, D., (2003). The PAF model: an integrated approach for landfill sustainability. Waste Management. Vol.23, pp.37–44. Crawford J.F. and Smith P.G., (1985). Landfill Technology. London: Butter Worths, DOE. Doedens, H. and Cord-Landwehr, K., (1989). Leachate recirculation. In: Christensen, T.H., Cossu, R., Stegmann, R. (Eds.), Sanitary Landfilling: Process, Technology and Environmental Impact. Academic Press. pp. 231–249. Dorota K. and Ewa K., (2008). The effect of landfill age on municipal leachate composition. Bioresource Technology. Vol.99, pp.5981–5985. El-Fadel, M., (1999). Leachate recirculation effects on settlement and biodegradation rates in MSW landfills. Environmental Technology. Vol.20, pp.121–133. Erses, S.A. and Onay, T.T., (2003). In situ heavy metal attenuation in landfills under methanogenic conditions. Journal of Hazardous Materials. Vol.99, pp.159–175. Erses S.A., Onay, T.T., and Orhan Y., (2008). Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource Technology. Vol.99, pp.5418–5426. Farquhar, G.J. and Rovers, F.A.. (1973). Gas production during refuse decomposition. Water, Air, and Soil Pollution. Vol.2, pp.483–497. Foth & Van Dyke and Associates, Inc., (2004). Updated Research Report on Bioreactor Landfills, Landfill Leachate Recirculation and Landfills with Methane Recovery. Ramsey/Washington County Resource Recovery Project. Minnesota, USA. Scope ID: 04R004. Gaudy, J.R., Ekambaram A. F., Rozich A. F., and Covin R. J., (1990) Comparision of respirometric methods for determination of biokinetic constants for toxic and nontoxic wastes. Proc. 33th Ind. Waste Conf., Purdue University. pp.393–403. Giannis, A., Simantiraki, F., Somara, M., and Gidarakos, F., (2008). Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste Management. Vol.28, pp.1346–1354. Goudar, C. T., Indu. J., and Strevett K. A., (1998). Comparison of relative rates of BTEX biodegradation using respirometry. Microbiol. Biotechnol. Vol.2, pp.11–18. Harmsen, J., (1983). Identification of organic compounds in leachate from a waste tip. Water Research. Vol.17 (6), pp.699–705. Ham, R. K. and Bookter, J., (1982). Decomposition of solid waste in test lysimeters. Journal of Environmental Engineering Division. Vol.108, pp. 1147-1170. Hanson, R.S. and Hanson, T.E., (1996). Methanotrophic bacteria. Microbio. Rev., Vol.60, pp.439–471. Henry, J.G., Prasad, D., and Young, H., (1987). Removal of organics from leachates by anaerobic filter. Water Research. Vol.11 (21), pp.1395–1399. He, R., Shen, D.S., Wang, J.Q., He, Y.H., and Zhu, Y.M., (2005). Biological degradation of MSW in a methanogenic reactor using treated leachate recirculation. Process Biochemistry. Vol.40, pp.3660–3666. He, R., Liu, X.W., Zhang, Z.J., and Shen, D.S., (2007). Characteristics of the bioreactor landfill system using an anaerobic–aerobic process for nitrogen removal. Bioresource Technology. Vol.98, pp.2526–2532. Huang, F.S., Hung, J.M., and Lu, C.J., (2012). Enhanced leachate recirculation and stabilization in a pilot landfill bioreactor in Taiwan. Waste Management & Research. Vol.30, pp.849–858. Hung, J.M., Chen, C.Y., Huang, F.S., and Lu, C.J., (2009). Biological heat potential and temperature effect of an autothermal thermophilic aerobic treatment (ATAT) system. Journal of Environmental Biology. Vol.30 (4), pp.615–619. Johansen, O.J. and Carlson, D.A., (1976). Characterization of sanitary landfill leachates. Water Research. Vol.10, pp.1129–1134. Jacobs, J., Scharff, H., Van Arkel, F., and de Gier, C.W., (2003). Odour reduction by aeration of landfills: experience, operation and costs. In: Proceedings Sardinia. The Ninth International Waste Management and Landfill Symposium, Cagliari, Italy. Jiang, J., Yang, G., Deng, Z., Huang, Y., Huang, Z., Feng, X., Zhou, S., and Zhang, C., (2007). Pilot-scale experiment on anaerobic bioreactor landfills in China. Waste Management. Vol.27, pp.893–901. Kim, H., (2005). Comparative Studies of Aerobic and Anaerobic Landfills Using Simulated Landfill Lysimeters. Ph.D. Thesis, University of Florida, USA. Kinman, R.N., Nutini, D.L., Walsh, J.J., Vogt, W.G., Stamm, J., and Rickabaugh, J., (1987). Gas enhancement techniques in landfill simulators. Waste Management and Research. Vol.5, pp.13–25. Komilis, D.P., Ham, R.K., and Stegmann, R., (1999). The effect of municipal solid waste pre-treatment on landfill behaviour: a literature review. Waste Management and Research. Vol.17, pp.10–19. Mehta, R., Barlaz, M.A., and Yazdani, R., (2002). Refuse decomposition in the presence and absence of leachate recirculation. Journal of Environmental Engineering Division. Vol.128 (3), pp.228–236. Miller, P. A. and Clesceri N. L., (2003), Waste Site as Biological Reactors. Lewis Publisher, USA., pp.95. Onay, T.T. and Pohland, F.G., (1998). In situ nitrogen management in controlled landfills. Water Research. Vol.32, pp.1383–1392. Orhan S.l. and Berrin T., (2013). Effect of persistent trace compounds in landfill gas on engine performance during energy recovery: A case study. Waste Management. Vol.33, pp.74–80. Osman N. A. and Delia T. S., (2005). Effect of alkalinity on the performance of a simulated landfill bioreactor digesting organic solid wastes. Chemosphere. Vol.59, pp.871–879. Otieno, F.A.O., (1994). Stabilization of solid waste through leachate recycling. Waste Management and Research. Vol.12, pp.93–100. Pohland, F.G., (1975). Sanitary landfill stabilization with the leachate recycle and residual treatment. Report for EPA Grand No. R801397, USEPA National environmental research center, Cincinnati, OH. Pohland, F.G., (1980). Leachate recycle as a landfill management option. Journal of the Environmental Engineering Division, Proceeding of the ASCE. Vol.106 (6), pp.1057–1069 Pohland, F.G. and Harper, S., (1986). Critical review and summary of leachate and gas production from landfill. Report No. EPA/600/2-86/073, US Environmental Protection Agency, Cincinnati. Pohland, F.G. and Kim, J. C., (1999). In situ anaerobic treatment of leachate in landfill bioreactors. Water Science and Technology. Vol.40 (8), pp.203–210. Pohland, F.G. and Kim, J.C., (2000). Microbially mediated attenuation potential of landfill bioreactor systems. Water Science and Technology Vol.41 (3), pp.247–254. Price, G.A., Barlaz, M.A., and Hater, G.R., (2003). Nitrogen management in bioreactor landfills. Waste Management. Vol.23, pp.675–688. Purcell, B., (2000a). Aerox landfilling: a change of approach. Chartered Institution of Wastes Management. pp.27–28. Purcell, B., (2000b). Aerox landfilling: a change of approach. Chartered Institution of Wastes Management. pp.25–27. Read, A.D., Hudgins, M., Harper, S., Phillips, P., and Morris,J., (2001). The successful demonstration of aerobic landfilling: the potential for a more sustainable solid waste management approach? Resource Conservation and Recycling. Vol.32, pp.115–146. Reinhart, D.R., McCreanor, P.T., and Townsend, T., (2002). The bioreactor landfill: its status and future. Waste Management and Research. Vol.20, pp.172–186. Reinhart, D. and Townsend, T., (1997). Landfill Bioreactor Design and Operation. Lewis Publishers, New York, NY. Robison, W. D., (1986). The Solid Waste Handbook. John Wiley and Sons Inc., ISBN: 0-471-87711-5, pp.313–320. Canada. San, I. and Onay, T.T., (2001). Impact of various leachate recirculation regimes on municipal solid waste degradation. Journal of Hazardous Materials. Vol.87, pp.259–271. Stanier, R.Y., Ingraham, J.L., Wheelis, M.I., and Paimter, P.R., (1986). The Microbial World. 5th ed., Printice Hall, Englewood Cliffs, NJ. Stegmann, R. and Spendlin, H. H., (1987). Enhancement of biochemical processes in sanitary landfills. International Sanitary Landfill Symposium Vol.2, pp.1–16. Shahriari H., Warith M., Hamoda M., and Kennedy K. J., (2012). Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Management. Vol.32, pp.41–52 Tchobanoglous, G., Theisen, H., and Vigil, S. A., (1993). Intergrated Solid Waste Management. McGraw-Hill International Editions. ISBN:0-07-112865-4. USA. Tchobanoglous, G. and Burton, F.L., (1979). Wastewater Engineering. McGraw-Hill International Editions. ISBN: 0-07-099461-7. USA. Tittlebaum, M.E., (1982). Organic carbon content stabilization through landfill leachate recirculation. Journal WPCF., Vol.54, pp.428–433. Thornton, S.F., Tellam, J.H., and Lerner, D.N., (2000). Attenuation of landfill leachate by UK Triassic sandstone aquifer materials 1, Fate of inorganic pollutants in laboratory columns. Journal of Contaminant Hydrology. Vol.43, pp.327–354. Townsend, T.G., Miller, W.L., Lee, H., and Earle, J.K.F., (1996). Acceleration of landfill stabilization using leachate recycle. Journal of Environmental Engineering. Vol.122 (4), pp. 263–268. Valencia, R., Vanderzon, W., Woelders, H., Lubberding, H., and Gijzen, H., (2009). Achieving final storage quality of municipal solid waste in pilot scale bioreactor landfills. Waste Management. Vol.29, pp.78–85. Waste Management, Inc., (2004). The Bioreactor Landfill-Next Generation Landfill Technology. Waste Management Bioreactor Program. Cincinnati. OH, USA. Warith, M., (2002). Bioreactor landfill: experimental and field results. Waste Management. Vol.22, pp.7–17. Warith, M., Li, X., and Jin, H., (2005). Bioreactor Landfills: State-of-the -Art Review. Emirates Journal for Engineering Research. Vol.10 (1), pp. 1–14. Young, J. C., (1998). On-Line Respirometers for Treatment Plant Monitoring and Control. University of Arkansas Fayetteville, Arkansas. Zehnder, A., (1978). Ecology of methane formation. In: Mitchell, R. (Ed.), Water Pollution Microbiology, Wiley, New York, Vol.2, pp.349–376.
摘要: 本論文以生物反應器掩埋場(Bioreactor Landfill, BRL)的操作方式探討提昇廢棄物在衛生掩埋場的生物分解效率。本論文以實驗室模廠(Laboratory Scale)與現地模廠(Field Scale)進行實驗,實驗廢棄物以一般固體廢棄物(Municipal Solid Waste, MSW)為主,並以三種操作方式進行,第一為生物反應器掩埋場(BRL)滲出水返送(Leachate Recirculation, LR),第二為滲出水返送並添加過氧化氫(H2O2)於滲出水後返送,第三為傳統操作模式(只有添加模擬降雨量)之生物分解實驗。 實驗結果顯示,單純以滲出水返送的BRL之沼氣產量高於添加過氧化氫與傳統操作模式約1.5~2.1倍。另由現地模廠實驗之滲出水分析可知,滲出水返送再添加H2O2與單純滲出水返送均能促使滲出水的BOD減少98.9%,COD減少97.5%;而BOD5/COD比值分別由0.9降至0.09(加過氧化氫)與0.11(滲出水返送);總有機碳(Total Organic Carbon)去除率均約93%。實驗結果顯示滲出水返送比傳統掩埋場之操作對一般固體廢棄物有較快分解速度。而添加過氧化氫的反應槽,其生物分解速率單純略高於滲出水返送之反應槽。氣泡式呼吸儀進行垃圾攝氧量(Oxygen uptake, Ou)試驗結果顯示,好氧生物分解槽生物可分解率β值為0.21,明顯低於厭氧生物分解槽之β值0.35。另由垃圾中殘留有機物的衰減顯示,添加過氧化氫的好氧生物分解槽的Ou為110 mg-O2,低於厭氧生物分解槽的Ou為177 mg-O2,顯示滲出水再添加過氧化氫後返送可加速生物分解速度與分解率。生物降解速率較高,垃圾場越快趨於穩定,並可減少掩埋場之操作維護與監測費用,更可進行後續土地之再利用。
This study focused on enhancing biodegradation of municipal solid waste (MSW) in a sanitary landfill site with different operation conditions, and particularly the operation of a bioreactor landfill (BRL). This study was conducted with two experimental modules: a laboratory column scale and a field pilot scale. The experimental solid waste was the realistic MSW collected from a local MSW transfer station. The experimental BRL was operated under three reactor conditions. The first reactor conditions was operated with leachate recirculation (LR). The second was operated with leachate recirculation and addition of hydrogen peroxide in the recycled leachate (LR-H2O2). The third was a control set similarly to a conventional landfill (CL) with the addition of water at the amount simulating local average rainfall. According to experimental results, the volume of the gas produced by the LR module was 1.5 to 2.1 times more than that of the LR- H2O2 and the CL modules in laboratory scale experiments. Furthermore, the results from field pilot scale experiments showed that the BOD, COD, and TOC removal efficiencies were 99.7%, 96%, and 93%, respectively in both the LR and LR-H2O2 operation modules. The BOD5/COD ratio dropped from 0.9 to 0.09 in the LR-H2O2 reactor and dropped to 0.11 in the LR reactor. An oxygen uptake (Ou) analysis was conducted to measure the residual organics in the bioreactor with a bubble respirometer. The Ou values were 110 mg and 177 mg of oxygen in the LR-H2O2 and LR reactors, respectively. The β value (biodegradation efficiency) was 0.21 for the LR-H2O2 bioreactor and 0.35 for the LR bioreactor. The experiment results showed that the LR enhanced more MSW biodegradation than did the CL. The biodegradation rate of the LR-H2O2 bioreactor was slightly higher than that of the LR bioreactor. The results of the bubble respirometer indicated that LR-H2O2 operation could accelerate MSW decomposition. Enhanced biodegradation could accelerate the stabilization of a landfill, therefore reducing the cost of maintenance and monitoring. In addition, by using this operation, the land in landfill sites can be reused and re-developed more quickly.
URI: http://hdl.handle.net/11455/5876
其他識別: U0005-2808201320050000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808201320050000
Appears in Collections:環境工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.