Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/59082
DC FieldValueLanguage
dc.contributor.author鄭如忠zh_TW
dc.contributor.other行政院國家科學委員會zh_TW
dc.contributor.other國立中興大學化學工程學系(所)zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T13:19:51Z-
dc.date.available2014-06-06T13:19:51Z-
dc.identifierNSC96-2221-E005-048-MY2zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/59082-
dc.description.abstractOrganic nonlinear optical (NLO) materials have been widely investigated because oftheir optical applications such as electro-optical (E-O) switches, ultrafast devices forinformation processing, storage and computing. For the fabrication of practical E-O devices,thermally stable high-Tg polyimides were vigorously pursued for fabricating E-O devices.Moreover, low optical loss is a must for the realization of waveguide devices. It remains achallenging task to achieve low optical loss, large optical nonlinearity, and excellentlong-term stability at elevated temperatures simultaneously. In our previous research, aconvergent route was taken to synthesize chromophore-containing malonamide dendriticstructures, larger EO coefficients were achieved from higher generation of dendrons due tothe better site-isolation effect. However, the thermal properties of thesechromophore-containing malonamide dendritic structures were not satisfactory. Therefore, inthis project, as part of endeavor in pursuit of device quality of second-order NLO materials,rigid imide-linkages serving as the building block for the chromophore-containing dendriticstructures seems to be a reasonable approach to enhance the thermal stability and to avoid theaggregation of chromophores (site-isolation effect). Moreover, we set out to develop aseries of bulky 2-dimensional (2-D) chromophores with large μβvalues, which are difficultto randomize after poling. In addition, fluorine-containing monomers would be introducedto the system in order to acquire waveguidable properties, i.e. low optical loss.For the first year, to enhance the temporal stability at elevated temperatures, imide-baseddendritic structures with hydroxyl groups at the terminal sites will be synthesized first.Subsequently, bulky carbazole-based 2-D chromophores will also be synthesized, which willbe further functionalized onto the dendritic structures in the second year. TheseNLO-active dendritic structures are expected to exhibit large optical nonlinearity andexcellent temporal stability at elevated temperatures. In addition, aromaticfluorine-containing polyimides with high Tgs will also be synthesized. Thesefluorine-containing polyimides with low optical loss would be further end-capped with theNLO-active dendritic structures via Diels-Alder Reaction. These NLO-active polyimideswould certainly exhibit excellent temporal stability and optical quality. Apart from themeasurement of E-O coefficients (Pockels effect), preliminary evaluation of these materials for device fabrication via optical loss study will be performed.en_US
dc.description.abstract二次非線性光學高分子材料具有較大的非線性光學係數、高應答速度、低雷射損害及高分子質輕、易加工成膜等優良特性,可應用在光電元件上,例如二倍頻裝置(Frequency Doubler)及光電調製器(Electro-OpticModulator)等元件上。本實驗室於先前計畫中研發出具有malonamide linkage之二次非線性樹枝狀高分子,此高分子隨著代數成長顯現site-isolation 之效應因而具有較高的光電係數值,但因結構關係而導致耐熱性不如預期,因此,為了使其材料具有更佳應用之價值,製備高玻璃轉移溫度(Tg)、高光電係數及低光損失值乃為本研究之重要課題。本計畫將以imide linkage 替代malonamide linkage 合成含」亞醯胺環樹枝狀二次非線性材料」,希望得到一系列具有高非線性光學係數、良好光學均勻性以及高溫穩定之非線性光學材料,以期能夠直接應用在非線性光電元件上。此外為了增加髮色團基本身之β值與熱穩定性,本計畫中亦研發出數個具Carbazole 主體之二維髮色團基;以及改善材料之光學損失,設計將樹枝狀髮色團基接枝於含氟高分子鏈上形成一系列具有高光電係數及低光損失之二次非線性光學材料。本 研 究 計 畫 分 兩 大 部 分 , 分 兩 年 執 行 , 分 述 如 下 :第一年的研究計畫中,吾人將設計一新穎含有亞醯胺鍵結之規則樹枝狀高分子與二維髮色團基之結構。其中含髮色團之規則樹枝狀高分子合成延伸本實驗室於dendrimer合成之研究,其設計之好處在於只需利用輕易的親核取代與去保護基反應即可達到高代數之結構,結構上之重複單元」亞醯胺鍵結」必定可達成高熱穩定性與高Tg之優點,藉此得到一系列具有高非線性光學係數兼具熱穩定佳之非線性光學材料。此外,本實驗在髮色團基的選擇方面,除了NCO-DO3之線性髮色團基外,併合成以carbazole為主體結構之二維髮色團基。而於二維髮色團基中,拉電子基部分除了選用一般較易合成之nitro group外,亦合成了具有dicyano vinyl group、N,N-diethylthiobarbituric acid 及indan-1,3-dione等之具有強拉電子團基且具熱穩定之二維髮色團基,利用二維髮色團基之電荷分子呈現特定非中心對稱排列有助於增加光學係數值,並因具有較堅硬之結構而達到良好之熱穩定性。本年度研究中將建立樹枝狀高分子與二維髮色團基單體之合成及純化技術,並測量其熱安定性質來評估所得之化合物。第二年計畫研究中,利用合成出來之聚亞醯胺規則樹枝狀高分子與線性及二維髮色團基結構反應,形成規則樹枝狀二次非線性光學材料,藉由亞醯胺結構增加材料之熱穩定性。根據研究顯示,當規則樹枝狀高分子之代數增加時,其非線性光學係數可利用dendrimer之3-D結構使髮色團基呈均勻分佈與適當隔離作用,增加極化時之排列效率,並隨dendrimer之外圍分枝越多可增加其電光係數r33 值,因此本年度之計畫中將探討代數與光電性質的差異性,並將利用自身合成之線性與二維髮色團基一併做一探討,預期樹枝狀高分子主體之亞醯胺結構與site-isolation作用,會使整體熱穩定性及光電係數有提高的特性。此外,吾人亦設計末端具有雙鍵官能基之聚亞醯胺高分子,此聚亞醯胺高分子之主體結構中含有三氟甲基結構,可降低整體之光損失值以利於應用於光波導元件上,此類合成即是將所合成之聚亞醯胺高分子與帶有anthracene核心之規則樹枝狀髮色團基進行Diels-Alder反應。一般而言,髮色團以接枝的形式接在高分子鏈上,對於材料之長時間穩定性而言,剛硬的高分子結構以及鏈糾纏行為則較為有利,期望能藉由導入高分子鏈之結構於光損失與長時間熱穩定性上有所改進,而能運用於製造光電元件上。zh_TW
dc.language.isozh_TWzh_TW
dc.relation.urihttp://grbsearch.stpi.narl.org.tw/GRB/result.jsp?id=1587075&plan_no=NSC96-2221-E005-048-MY2&plan_year=97&projkey=PB9706-0673&target=plan&highStr=*&check=0&pnchDesc=%E5%85%B7%E9%AB%98%E7%86%B1%E7%A9%A9%E5%AE%9A%E4%BA%9E%E9%86%AF%E8%83%BA%E7%B5%90%E6%A7%8B%E4%B9%8B%E8%A6%8F%E5%89%87%E6%A8%B9%E6%9E%9D%E7%8B%80%E6%9D%90%E6%96%99%2F%E4%BA%8C%E7%B6%AD%E7%99%BC%E8%89%B2%E5%9C%98%E5%9F%BA%E5%90%88%E6%88%90%E5%8F%8A%E5%85%89%E9%9B%BB%E7%89%B9%E6%80%A7%E7%A0%94%E7%A9%B6en_US
dc.subject基礎研究zh_TW
dc.subjectimide-based dendritic structureen_US
dc.subject光電工程zh_TW
dc.subject亞醯胺規則樹枝狀高分子zh_TW
dc.subject二維發色團基zh_TW
dc.subject高溫穩定性zh_TW
dc.subject光學係數zh_TW
dc.subject2-D chromophoreen_US
dc.subjecttemporal stabilityen_US
dc.subjectEOcoefficienten_US
dc.title具高熱穩定亞醯胺結構之規則樹枝狀材料/二維發色團基合成及光電特性研究zh_TW
dc.titleSynthesis and Electro-Optical Properties of Thermally Stable Imide-Based Dendritic Structures /Two Dimensional Chromophoresen_US
dc.typeResearch Reportszh_TW
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.