請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/5909
標題: 鹼活化過硫酸鹽泡沫處理PAHs之探討
Evaluation of alkaline activated persulfate oxidative foam for treating PAHs
作者: 吳崇溢
Wu, Chung-Yi
關鍵字: 現地化學氧化
In situ chemical oxidation
鹼活化過硫酸鹽
界面活性劑
泡沫淋洗
未飽和含水層
多環芳香族碳氫化合物
alkaline activated persulfate
surfactant
foam flushing
unsaturated zone
polycyclic aromatic hydrocarbons
出版社: 環境工程學系所
引用: Achten, C., Hofmann, T., 2009. Native polycyclic aromatic hydrocarbons (PAH) in coals – A hardly recognized source of environmental contamination. Science of The Total Environment 407, 2461-2473. Badr, T., Hanna, K., de Brauer, C., 2004. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. Journal of Hazardous Materials 112, 215-223. Beltran, F.J., Gonzalez, M., Ribas, F.J., Alvarez, P., 1998. Fenton reagent advanced oxidation of polynuclear aromatic hydrocarbons in water. Water, Air, & Soil Pollution 105, 685-700. Blackall, L.L., Marshall, K.C., 1989. The mechanism of stabilization of actinomycete foams and the prevention of foaming under laboratory conditions. Journal of Industrial Microbiology & Biotechnology 4, 181-187. Block, P.A., Brown, R.A., Robinson, D., 2004. Novel Activation Technologies for Sodium Persulfate In Situ Chemical Oxidation. Proceedings of the Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds. 24−27 May, Monterey, California. Bogan, B.W., Trbovic, V., Paterek, J.R., 2003. Inclusion of vegetable oils in Fenton’s chemistry for remediation of PAH-contaminated soils. Chemosphere 50, 15-21. Chi, F.H., 2011. Remediation of polycyclic aromatic hydrocarbon-contaminated soils by nonionic surfactants: Column experiments. Environmental Engineering Science 28, 139-145. Chowdiah, P., Misra, B.R., Kilbane, J.J., Srivastava, V.J., Hayes, T.D., 1998. Foam propagation through soils for enhanced in-situ remediation. Journal of Hazardous Materials 62, 265-280. Costa, H.J., Sauer, T.C., 2005. Forensic approaches and considerations in identifying PAH background. Environmental Forensics 6, 9-16. Cousins, I.T., Beck, A.J., Jones, K.C., 1999. A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air–soil interface. Science of The Total Environment 228, 5-24. Couto, H.J.B., Massarani, G., Biscaia Jr, E.C., Sant''Anna Jr, G.L., 2009. Remediation of sandy soils using surfactant solutions and foams. Journal of Hazardous Materials 164, 1325-1334. Craig, V.S.J., Ninham, B.W., Pashley, R.M., 1993. The effect of electrolytes on bubble coalescence in water. The Journal of Physical Chemistry 97, 10192-10197. Dawson, H.E., Roberts, P.V., 1997. Influence of viscous, gravitational, and capillary forces on DNAPL saturation. Ground Water 35, 261-269. Ferrarese, E., Andreottola, G., Oprea, I.A., 2008. Remediation of PAH-contaminated sediments by chemical oxidation. Journal of Hazardous Materials 152, 128-139. Frick, C.M., Farrell, R.E., Germida, J.J., 1999. Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. Department of Soil Science University of Saskatchewan, Petroleum Technology Alliance of Canada (PTAC). Furman, O.S., Teel, A.L., Watts, R.J., 2010. Mechanism of base activation of persulfate. Environmental Science & Technology 44, 6423-6428. Gan, S., Lau, E.V., Ng, H.K., 2009. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials 172, 532-549. Gryzenia, J., Cassidy, D., Hampton, D., 2009. Production and accumulation of surfactants during the chemical oxidation of PAH in soil. Chemosphere 77, 540-545. Gupta, S.S., Gupta, Y.K., 1981. Hydrogen ion dependence of the oxidation of iron(II) with peroxydisulfate in acid perchlorate solutions. Inorganic Chemistry 20, 454-457. Hayon, E., Treinin, A., Wilf, J., 1972. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals. Journal of the American Chemical Society 94, 47-57. Henner, P., Schiavon, M., Morel, J.L., Lichtfouse, E., 1997. Polycyclic aromatic hydrocarbons (PAH) occurrence and remediation methods. Analusis Magazine 25, M56-M59. Hirasaki, G.J., Miller, C.A., Szafranski, R., Tanzil, D., Lawson, J.B., Meinardus, H., Jin, M., Londergan, J.T., Jackson, R.E., Pope, G.A., Wade, W.H., 1997. Field Demonstration of the Surfactant/Foam Process for Aquifer Remediation. SPE Annual Technical Conference and Exhibition, 5-8 October, San Antonio, Texas House, D.A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews 62, 185-203. IARC, 2002. IARC Monographs on the evaluation of carcinogenic risks to humans. International agency for research on cancer 82, 367-418. Iglesias, E., Anderez, J., Forgiarini, A., Salager, J.-L., 1995. A new method to estimate the stability of short-life foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects 98, 167-174. Juhasz, A.L., Naidu, R., 2000. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation 45, 57-88. Kelley, I., Freeman, J.P., Evans, F.E., Cerniglia, C.E., 1993. Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology 59, 800-806. Kolthoff, I.M., Medalia, A.I., Raaen, H.P., 1951. The reaction between ferrous iron and peroxides. IV. Reaction with potassium persulfate. Journal of the American Chemical Society 73, 1733-1739. Kommalapati, R.R., Valsaraj, K.T., Constant, W.D., Roy, D., 1998. Soil flushing using colloidal gas aphron suspensions generated from a plant-based surfactant. Journal of Hazardous Materials 60, 73-87. Lake, L.W., 1989. Enhanced oil recovery. Prentice Hall Inc., Old Tappan, NJ. Lee, B.D., Hosomi, M., 2001. A hybrid Fenton oxidation–microbial treatment for soil highly contaminated with benz(a)anthracene. Chemosphere 43, 1127-1132. Lee, W.-J., Wang, Y.-F., Lin, T.-C., Chen, Y.-Y., Lin, W.-C., Ku, C.-C., Cheng, J.-T., 1995. PAH characteristics in the ambient air of traffic-source. Science of The Total Environment 159, 185-200. Li, C.-T., Mi, H.-H., Lee, W.-J., You, W.-C., Wang, Y.-F., 1999. PAH emission from the industrial boilers. Journal of Hazardous Materials 69, 1-11. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere 55, 1213-1223. Liang, C., Huang, C.-F., Chen, Y.-J., 2008. Potential for activated persulfate degradation of BTEX contamination. Water Research 42, 4091-4100. Liang, C., Su, H.-W., 2009. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial & Engineering Chemistry Research 48, 5558-5562. Liang, C.J., Bruell, C.J., Marley, M.C., Sperry, K.L., 2003. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination: An International Journal 12, 207-228. Liu, Z., Jacobson, A.M., Luthy, R.G., 1995. Biodegradation of naphthalene in aqueous nonionic surfactant systems. Applied and Environmental Microbiology 61, 145-151. Lundstedt, S., 2003. Analysis of PAHs and their transformation products in contaminated soil and remedial processes. Umea University, Sweden. Mallakin, A., McConkey, B.J., Miao, G., McKibben, B., Snieckus, V., Dixon, D.G., Greenberg, B.M., 1999. Impacts of structural photomodification on the toxicity of environmental contaminants: Anthracene photooxidation products. Ecotoxicology and Environmental Safety 43, 204-212. Mohamed, A., Mahfoodh, A.S.M., 2006. Solubilization of naphthalene and pyrene by sodium dodecyl sulfate (SDS) and polyoxyethylenesorbitan monooleate (Tween 80) mixed micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 287, 44-50. Mulligan, C.N., Eftekhari, F., 2003. Remediation with surfactant foam of PCP-contaminated soil. Engineering Geology 70, 269-279. Mulligan, C.N., Yong, R.N., Gibbs, B.F., 2001. Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology 60, 371-380. Myers, D., 1999. Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd. Ed., John Wiley & Sons, Inc., New York. Nam, K., Rodriguez, W., Kukor, J.J., 2001. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction. Chemosphere 45, 11-20. Paria, S., 2008. Surfactant-enhanced remediation of organic contaminated soil and water. Advances in Colloid and Interface Science 138, 24-58. Pennell, K.D., Pope, G.A., Abriola, L.M., 1996. Influence of viscous and buoyancy forces on the mobilization of residual tetrachloroethylene during surfactant flushing. Environmental Science & Technology 30, 1328-1335. Perry, P.H., Chilton, C.H., 1973. Chemical Engineer''s Handbook. 5th Ed., McGraw-Hill, New York. Pierzynski, G.M., Sims, J.T., Vance, G.F., 2005. Soils and Environmental Quality. Taylor & Francis, Boca Raton, Florida. Pugh, R.J., 1996. Foaming, foam films, antifoaming and defoaming. Advances in Colloid and Interface Science 64, 67-142. Root, D.K., Lay, E.M., Block, P.A., Cutler, W.G., 2005. Investigation of Chlorinated Methanes Treatability Using Activated Sodium Persulfate. Proceedings of the First International Conference on Environmental Science and Technology. New Orleans, Louisiana. Roper, J.C., Pfaender, F.K., 2001. Pyrene and chrysene fate in surface soil and sand microcosms. Environmental Toxicology and Chemistry 20, 223-230. Rothmel, R.K., Peters, R.W., St. Martin, E., DeFlaun, M.F., 1998. Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environmental Science & Technology 32, 1667-1675. Roy, D., Kongara, S., Valsaraj, K.T., 1995. Application of surfactant solutions and colloidal gas aphron suspensions in flushing naphthalene from a contaminated soil matrix. Journal of Hazardous Materials 42, 247-263. Schilling, K., Zessner, M., 2011. Foam in the aquatic environment. Water Research 45, 4355-4366. Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M., 2003. Frontmatter, Environmental Organic Chemistry. John Wiley & Sons, Inc., Hoboken, NJ. Sebba, F., 1971. Microfoams—an unexploited colloid system. Journal of Colloid and Interface Science 35, 643-646. Shen, X., Zhao, L., Ding, Y., Liu, B., Zeng, H., Zhong, L., Li, X., 2011. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. Journal of Hazardous Materials 186, 1773-1780. Short, J.W., Irvine, G.V., Mann, D.H., Maselko, J.M., Pella, J.J., Lindeberg, M.R., Payne, J.R., Driskell, W.B., Rice, S.D., 2007. Slightly weathered Exxon Valdez oil persists in gulf of Alaska beach sediments after 16 years. Environmental Science & Technology 41, 1245-1250. Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S., 2001. Principles and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press, Ohio. Mueller Steam Specialty, 2010. Screen and basket facts. Available from: www.muellersteam.com. Szecsody, J.E., Williams, M.D., Burns, C.A., Girvin, D.C., Moore, R.C., McKinley, J.P., Fruchter, J.S., Truex, M.J., Vermeul, V.R., Phillips, J.L., 2007. Hanford 100-N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100-N Sediments. Pacific Northwest National Laboratory Report, No. PNNL-16891. Tadros, T.F., 2005. Applied surfactants: principles and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. Tan, S.N., Fornasiero, D., Sedev, R., Ralston, J., 2005. The role of surfactant structure on foam behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects 263, 233-238. Teaf, C., Merkel, B., Mulisch, H.M., Kuperberg, M., Wcislo, E., 2011. WHO Groundwater Monograph, Chapter 11, Industry, mining and military sites: Information needs. World Health Organization (WHO). Tsai, Y.-J., Chou, F.-C., Cheng, S.-J., 2009. Using tracer technique to study the flow behavior of surfactant foam. Journal of Hazardous Materials 166, 1232-1237. Tung, C.-C., Yang, Y.-M., Chang, C.-H., Maa, J.-R., 2002. Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration with mixed surfactants. Waste Management 22, 695-701. USEPA, 2007. Treatment Technologies for Site Cleanup: Annual Status Report. 12th Ed., EPA-542-R-07-012. Van Eldik, R., Harris, G.M., 1980. Kinetics and mechanism of the formation, acid-catalyzed decomposition, and intramolecular redox reaction of oxygen-bonded (sulfito)pentaamminecobalt(III) ions in aqueous solution. Inorganic Chemistry 19, 880-886. Walter, T., Ederer, H.J., Forst, C., Stieglitz, L., 2000. Sorption of selected polycyclic aromatic hydrocarbons on soils in oil-contaminated systems. Chemosphere 41, 387-397. Wang, D., Li, Y., Yang, M., Han, M., 2008. Decomposition of polycyclic aromatic hydrocarbons in atmospheric aqueous droplets through sulfate anion radicals: An experimental and theoretical study. Science of The Total Environment 393, 64-71. Wang, S., Mulligan, C.N., 2004. An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57, 1079-1089. Wang, S., Mulligan, C., 2004. Rhamnolipid foam enhanced remediation of cadmium and nickel contaminated soil. Water, Air, & Soil Pollution 157, 315-330. West, C.C., Harwell, J.H., 1992. Surfactants and subsurface remediation. Environmental Science & Technology 26, 2324-2330. Wick, A.F., Haus, N.W., Sukkariyah, B.F., Haering, K.C., Daniel, W.L., 2011. Remediation of PAH-Contaminated Soils and Sediments: A Literature Review. Virginia Polytechnic Institute and State University Department of Crop and Soil Environmental Sciences, Environmental Soil Science, Wetland Restoration and Mined Land Reclamation. Blacksburg, Virginia. Yan, J., Wang, L., Fu, P.P., Yu, H., 2004. Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the USEPA priority pollutant list. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 557, 99-108. Yang, H.-H., Lai, S.-O., Hsieh, L.-T., Hsueh, H.-J., Chi, T.-W., 2002. Profiles of PAH emission from steel and iron industries. Chemosphere 48, 1061-1074. Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., Niu, R., 2010. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials 179, 552-558. Zhang, J., Jing, Y., Wu, Z., Li, Q., 2009. Removal of trace Cu2+ from aqueous solution by foam fractionation. Desalination 249, 503-506. Zhong, L., Szecsody, J., Oostrom, M., Truex, M., Shen, X., Li, X., 2011. Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam. Journal of Hazardous Materials 191, 249-257. Zhong, L., Szecsody, J.E., Qafoku, N.P., Dresel, P.E., Zhang, Z.F., 2009. Foam-delivery of remedial amendments for enhanced vadose zone metals and radionuclides remediation. WM2009 Conference. Phoenix, Arizona. Zhou, W., Zhu, L., 2008. Enhanced soil flushing of phenanthrene by anionic–nonionic mixed surfactant. Water Research 42, 101-108. 工業技術研究院, 2000. 物質安全資料表. 工業技術研究院. 行政院環保署, 2011a. 土壤污染管制標準. 行政院環保署. 行政院環保署, 2011b. 地下水污染管制標準. 行政院環保署. 雷鎔瑄, 2011. 過硫酸鹽活化程序對整治難分解性有機污染物之適用性篩選試驗. 國立中興大學環境工程研究所碩士論文.
摘要: 多環芳香烴化合物(PAHs)具有低水溶性及低揮發性之特性,本研究嘗試結合鹼活化過硫酸鹽(氧化性破壞)及泡沫淋洗(物理性移除)兩項技術,以氧化性泡沫整治受PAHs (例如萘)污染之未飽和含水層土壤進行評估。實驗首先針對鹼性過硫酸鹽泡沫產生之可行性及泡沫特性進行探討,藉由不同濃度之界面活性劑(Sodium dodecylsulfate, SDS)搭配固定濃度之氧化劑(Sodium persulfate, SPS)配比產生泡沫,結果顯示以1.5% SDS/0.1 M SPS/0.1 M NaOH混合溶液可穩定生成具氧化性之泡沫,其所生成之泡沫其品質高達99.8%、泡沫穩定性為0.8 hr。由增溶試驗結果指出,相較於萘之水中飽和溶解度,上述混合溶液對萘增溶後之濃度可提高至16.6倍,此外SPS及NaOH添加下對萘之增溶濃度無顯著影響。接續由批次降解試驗的結果得知,以鹼活化過硫酸鹽氧化方式可於24 hr內完全降解水溶液中萘(26.3 mg/L),但SDS之存在下會減緩其降解速率。 泡沫淋洗土壤管柱試驗結果顯示,萘污染土壤之總去除率達94.0%,其中經由液相所移除之比例佔萘總量之41.4%;然而其餘部分則大多由氣相中逸散移除;實驗另以低揮發性之蔥污染土進行試驗,由實驗結果中顯示,蔥之總去除率為68.0%,其中經由液相及其中懸浮/沉澱物所移除之比例分別佔蔥總量之38.4%及14.9%,最後經由質量平衡計算出氧化所去除之比例佔14.6%。由上述結果推論,以鹼性過硫酸鹽泡沫淋洗受PAHs之污染土壤,不僅可有效移除污染物,並對污染物有氧化之潛力,為一可行之處理PAHs污染之整治方式。
Polycyclic aromatic hydrocarbons (PAHs) have the characteristics such as low solubility and low volatilization. This study was conducted to develop an oxidative foam flushing technology, which combines the benefits of alkaline activated persulfate and surfactant foam flushing for the treatment of PAHs (e.g., naphthalene) contaminated soils. The feasibility of producing alkaline activated persulfate foam with the mixed solution which contains surfactant (Sodium dodecylsulfate, SDS, at various concentration levels) and oxidant (Sodium persulfate, SPS, at one concentration level) and their characteristics were examined. The results showed 1.5% SDS/0.1 M SPS/0.1 M NaOH mixed solution can be employed to generate stable oxidative foam, with characteristics of foam quality of 99.8% and stability of 0.8 hr. In the solubilization test, the solubility of naphthalene increased about 16.6 folds in solution with the above mentioned composition than the naphthalene aqueous saturated solubility. Furthermore, it was observed that the solubilization of naphthalene was not affected by addition of SPS or NaOH. Naphthalene in the aqueous phase (26.3 mg/L) can be completely degraded in 24 hr with alkaline activated persulfate system. However, the presence of SDS would decrease the degradation rate of naphthalene. The results of soil column experiments showed that the removal of naphthalene was about 94.0% by oxidative foam flushing. 41.4% of naphthalene was removed by liquid while the remaining portion of naphthalene removal was induced in gaseous phase. Additional soil column experiments spiked with anthracene, which has a lower volatility was conducted. Experimental results showed the removal of anthracene was about 68.0% in which the percentages of anthracene removal in liquid and suspension/sediments were 38.4% and 14.9%, respectively. In addition, through mass balance calculation, it was found that 14.6% of anthracene was destroyed by oxidation. In conclusion, the oxidative foam flushing would function both physical removal and chemically destroy PAHs and therefore, exhibits the potential for remediating PAHs contaminated soils.
URI: http://hdl.handle.net/11455/5909
其他識別: U0005-2607201217062800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2607201217062800
顯示於類別:環境工程學系所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。