Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/59130
標題: 經連續自我反覆反應製備超分枝聚醯亞胺材料及其非線性光學特性之研究
Synthesis and Characterization of Hyperbranched Polyimides via Sequential Self-Repetitive Reaction (Ssrr) and Their Applications in Nonlinear Optical Study
作者: 鄭如忠
關鍵字: 光電工程
應用研究
摘要: Organic nonlinear optical (NLO) materials have been extensively investigated due totheir higher bandwidth, larger nonlinearity and lower cost as compared to inorganics. One ofthe most important subjects in developing NLO polymers for electro-optical (EO) modulationis whether the polymers possess excellent temporal stability. In recent years, dendriticmacromolecules have drawn considerable interest because of their unique physical andchemical properties, such as low solution viscosity, high solubility, and a large number ofterminal functional groups, caused by the highly branched structure. In this study, wepropose to develop two new types of hyperbranched polymer systems exhibiting large opticalnonlinearity and excellent temporal stability at elevated temperatures. In the first year, thehyperbranched polyimides will be prepared via a novel methodology, sequentialself-repetitive reaction (SSRR). This SSRR is based on aryl carbodiimide (CDI) chemistry.One of the diisocyanate monomers was reacted to form poly-CDI, and subsequently one ofthe triaromatic acids was reacted with poly-CDI to obtain intermediates, poly(N-acylurea)s.The poly(N-acylurea)s exhibit excellent organosolubility, which enable the fabrication of highquality optical thin films. The N-acylurea moieties are then converted to imide structuresvia SSRR, and the Tgs of the polymers will be elevated significantly. The selection of thephosphorus-containing polymer as the polymeric matrices provides enhanced solubility andthermal stability, and excellent optical quality. Excellent temporal stability and low waveguideoptical loss would also be obtained for the hyperbranched polymers.In the second year, the NLO-active poly-CDIs are first prepared from the respectivecoupling reaction of two types of isocyanate-containing chromophores (DNDA(2,4-diamino-4'-(4-nitrophenyl-diazenyl) azobenzene) and DAC(bis(4-aminophenyl(4-(4-nitrophenyl)-diazenyl)-phenyl)amine)). Subsequently, a DOPOcontaining triaromatic acid will be added to obtain an intermediate, poly(N-acylurea). Afterin-situ poling and curing process, N-acylurea moieties are converted to amide or imidestructures via SSRR, and the Tgs of the polymers are elevated significantly. The spatialseparation of chromophores endows the polymers with favorable site-isolation effect andavoids chromophoric aggregation. A series of NLO hyperbranched polymers exhibitexcellent thermal stability after poling and curing would be developed. Thesepoly(N-acylurea)s can be further mixed with the organically modified montmorillonite (MMT)to be processed into thin films for further poling. Incorporating only a small amount oforganically modified MMT into the high Tg hyperbranched polymers seem to be a reasonableapproach to enhance the NLO stability. Apart from the measurement of EO coefficients(Pockels effect), preliminary evaluation of these materials for waveguides via optical lossstudy will also be performed.
超分枝高分子之樹枝狀結構不僅能改善加工上的問題(如溶解性及穩定性),其規則性奈米孔洞(viod)亦會降低光波導中光散射(light scattering)及振動吸收(vibrationalabsorption)所造成的光損失值,適用於光傳遞材料;樹枝狀結構的優點眾多,但在大的分枝度下會導致熱穩定性的明顯降低。為克服熱穩定性不佳的缺點,導入具高玻璃轉移溫度之高分子結構和無機材料成為研究的熱門重點。二次非線性光學高分子材料因具大的非線性光學係數、低介電常數、快速應答、寬廣的變頻範圍、優越光學透明性、易加工成膜等優點,近年來已被廣泛的研究,應用在光電元件上,例如光開關裝置、光電調制器等。製備超樹枝狀結構高分子,且具備高玻璃轉移溫度及有高溫極化熟化之能力的材料,將是本計畫之重點,計畫區分為兩年進行,分述如下:第一年:利用新製備方式(連續自我反覆反應,SSRR)開發超分枝聚醯胺與超分枝聚醯亞胺高分子。藉由獨特且具有高溶解性的poly(N-acylurea)中間體,強化高分子材料之加工性,克服聚醯胺與聚醯亞胺溶解度之問題;利用中間體改善超分枝高分子在合成分歧化時造成之凝膠化現象,使材料能溶於有機溶劑中,方便加工,隨後再予以加熱,完成超分枝結構,製備出堅硬主鏈結構之超分枝聚醯胺與聚醯亞胺。實驗首先利用雙異氰酸鹽單體以DMPO (1,3-dimethyl-3-phospholene oxide)為觸媒下,製備出聚碳二醯胺(poly-CDI),接著添加不同結構的三酸單體(triaromatic acid),形成含不同磷比例之高分子中間體,poly(N-acylurea)s;利用升高溫度即可經由SSRR 反應轉化官能基,形成超分枝全聚醯胺、超分枝全聚醯亞胺與超分枝含磷全聚醯亞胺材料,材料的分枝度可藉由三酸單體所用比例進行控制。在計畫中,將對不同含磷結構與不同含磷比例進行穩定性與光學特性之評估,希望將含磷材料進行光學材料特性的全盤研究。預期合成出來的超分枝高分子具有極佳之熱性質與可調之波導光損失值。第二年:預計將挑選最為穩定之DOPO 系列進行後續高溫穩定性超分枝高分子應用的方向。將具二次非線性特性之發色團基改質成雙異氰酸鹽單體,所選用之發色團基分別具有以下優點:發色團基 DAC (4-(N,N-bis(p-aminophenyl)amino)-4’-nitroazobenzene)具有極佳的μβ 值, 且其熱裂解溫度也相當高; 而偶氮苯發色團基DNDA(2,4-diamino-4’-(4-nitrophenyl -diazenyl)azobenzene )具備容易合成、大的非線性光學係數以及成本便宜…等。研究中,將針對不同含磷比例與不同發色團基比例的調整中,比較各比例之熱穩定性、電光係數值、折射率、光損失值、分子量以及分枝度之關係。此外,也將進行奈米蒙脫土光學複合材料(nanocomposites)的相關研究,將具有應用潛力之超樹枝狀二次非線性光學特定比例中間體,poly(N-acylurea)s,導入微量的不同胺基量之層狀有機改質蒙脫土(organoclay),藉由升高溫度進行SSRR 反應,將高分子共價鍵結於無機蒙脫土表面提升相容性並提高材料熱性質,在此同時亦可保有不錯的光學性質,獲取最合適的性質與有機無機比例。研究中藉由光電性質量測評估材料結構,如製備薄膜之好壞(影響後續之處理)、光學性質(光損失;optical loss)、光電係數大小(應用上之潛力)、熱性質的優劣(材料的長時間穩定性)等等。探討不同發色團基系列非線性光學高分子對光電性質的影響,期望解決光電係數低、應用壽命短(長時間使用穩定性及光損失)之問題。
URI: http://hdl.handle.net/11455/59130
其他識別: NSC99-2221-E005-002-MY2
文章連結: http://grbsearch.stpi.narl.org.tw/GRB/result.jsp?id=2224433&plan_no=NSC99-2221-E005-002-MY2&plan_year=100&projkey=PB10001-1523&target=plan&highStr=*&check=0&pnchDesc=%E7%B6%93%E9%80%A3%E7%BA%8C%E8%87%AA%E6%88%91%E5%8F%8D%E8%A6%86%E5%8F%8D%E6%87%89%E8%A3%BD%E5%82%99%E8%B6%85%E5%88%86%E6%9E%9D%E8%81%9A%E9%86%AF%E4%BA%9E%E8%83%BA%E6%9D%90%E6%96%99%E5%8F%8A%E5%85%B6%E9%9D%9E%E7%B7%9A%E6%80%A7%E5%85%89%E5%AD%B8%E7%89%B9%E6%80%A7%E4%B9%8B%E7%A0%94%E7%A9%B6
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.