Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/60465
標題: Crystal Structure and Inhibition Studies of Transglutaminase from Streptomyces mobaraense
作者: Yang, M.T.
李天雄
Chang, C.H.
Wang, J.M.
Wu, T.K.
Wang, Y.K.
Chang, C.Y.
Li, T.T.
楊明德
期刊/報告no:: Journal of Biological Chemistry, Volume 286, Issue 9, Page(s) 7301-7307.
摘要: The crystal structure of the microbial transglutaminase (MTGase) zymogen from Streptomyces mobaraense has been determined at 1.9-angstrom resolution using the molecular replacement method based on the crystal structure of the mature MTGase. The overall structure of this zymogen is similar to that of the mature form, consisting of a single disk-like domain with a deep active cleft at the edge of the molecule. A major portion of the prosequence (45 additional amino acid residues at the N terminus of the mature transglutaminase) folds into an L-shaped structure, consisting of an extended N-terminal segment linked with a one-turn short helix and a long alpha-helix. Two key residues in the short helix of the prosequence, Tyr-12 and Tyr-16, are located on top of the catalytic triad (Cys-110, Asp-301, and His-320) to block access of the substrate acyl donors and acceptors. Biochemical characterization of the mature MTGase, using N-alpha-benzyloxycarbonyl-L-glutaminylglycine as a substrate, revealed apparent K(m) and k(cat)/K(m) values of 52.66 mM and 40.42 mM(-1) min(-1), respectively. Inhibition studies using the partial prosequence SYAETYR and homologous sequence SQAETYR showed a noncompetitive inhibition mechanism with IC(50) values of 0.75 and 0.65 mM, respectively, but no cross-linking product formation. Nevertheless, the prosequence homologous oligopeptide SQAETQR, with Tyr-12 and Tyr-16 each replaced with Gln, exhibited inhibitory activity with the formation of the SQAETQR-monodansylcadaverine fluorophore cross-linking product (SQAETQR-C-DNS). MALDI-TOF tandem MS analysis of SQAETQR-C-DNS revealed molecular masses corresponding to those of (N)SQAETQ(C)-C-DNS and C-DNS-(N)QR(C) sequences, suggesting the incorporation of C-DNS onto the C-terminal Gln residue of the prosequence homologous oligopeptide. These results support the putative functional roles of both Tyr residues in substrate binding and inhibition.
URI: http://hdl.handle.net/11455/60465
ISSN: 0021-9258
文章連結: http://dx.doi.org/10.1074/jbc.M110.203315
Appears in Collections:分子生物學研究所

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.