Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6074
標題: EUV應用於TFT-LCD濕蝕刻製程的金屬殘留缺陷改善之研究
Study on the improvement of metal residues in TFT-LCD wet etching process by excimer ultraviolet
作者: 李南暹
Lee, Nan-Hsien
關鍵字: excimer ultraviolet
準分子紫外光
wet etching
metal residues
濕蝕刻
金屬殘留缺陷
出版社: 電機工程學系所
引用: [1] http://www.displaysearch.com.tw/2009/nwslst.aspx [2] http://www.taiwansig.tw/index.php?option=com_content&task=view&id=2018&It emid=120 [3] http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/quarterly_large_area_tft_lcd_production_strategy_report.asp [4] http://taqm.epa.gov.tw/taqm/zh-tw/b12071.aspx [5] http://www.ushio.com.tw/tw/technology/index.html [6] C. L. Haynes, R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics”, Vol.105, pp. 5599-5611, 2001. [7] http://ssttpro.acesuppliers.com/meg/meg_1_9680689532005959323597256_4086.html, 2002. [8] 戴亞翔,「TFT-LCD面板的驅動與設計」,五南圖書出版股份有限公司,2008年。 [9] http://www.etafilm.com.tw/PVD_Sputtering_Deposition_ch.html [10] 羅正忠、張鼎張,「半導體製程技術導論」,學銘圖書出版股份有限公司,2002年。 [11] 黃炳文,「利用電漿增強化學氣相沉積技術製作超親水自清潔氧化鈦薄膜之研究」,國立虎尾科技大學光電與材料科技研究所,碩士論文,2006年。 [12] Q. Liu, X. Wu, B. Wang, Q. Liu., “Preparation and super-hydrophilic properties of TiO2/SnO2 composite thin films”, Materials Research Bulletin, vol.37, pp. 2255-2262, 2002. [13] 陳文魁,「最佳微影製程條件之研究-金凸塊案例」。私立義守大學工業工程與管理研究所,碩士論文,2007年。 [14] 莊達人,「VLSI 製造技術」,高立圖書出版股份有限公司,2004年。 [15] 龍柏華,「濕蝕刻製程介紹暨機台原理簡介」,光連雙月刊,第48期,第37-41頁,2003年。 [16] 龍柏華、何教恆,「乾蝕刻製程暨機台原理簡介」,光連雙月刊,第53期,2004年。 [17] T. Yamazaki, H. Kawakami, H. Hori, “Color TFT liquid crystal displays”, Semiconductor Equipment and Materials International, 1996. [18] 陳奎霖,「應用於薄膜電晶體液晶顯示器面板之氮化矽成膜及電漿蝕刻技術」,國立彰化師範大學機電工程研究所,碩士論文,2006年。 [19] 鐘智翰,「具奈米級圖案基材之接觸角量測」,國立臺灣大學化學工程學研究所,碩士論文,2001年。 [20] A. Ulman, “An Introduction to Ultrathin Organic Films”, Academic Press, Boston, 1991. [21] Neumann, A. W.; Spelt J. K., ”Applied Surface Thermodynamics”, Marcel Dekker, New York, 1996. [22] 吳文獻,「奈米球微影術於奈米製程技術之應用與發展」,國立成功大學光電科學與工程研究所,碩士論文,2005年。
摘要: 實務上在薄膜電晶體液晶顯示器的金屬濕蝕刻製程中,常利用準分子紫外光去除附著在基板上的油污或有機物,以降低基板上的純水接觸角,使鋁蝕刻溶液能更容易地附著在基板表面進行蝕刻,且能避免被濕蝕刻過程中產生的氣泡附著在基板上,如此可以減少濕蝕刻後金屬殘留缺陷的產生。但是受限於對設備產出速度的要求,顯現出準分子紫外光設備的效能不足,所以基板經過濕蝕刻後的金屬殘留缺陷數仍有過高的問題。故本研究利用純水接觸角量測儀、不同金屬沉積和塗佈光阻後的基板,配合在準分子紫外光照射設備與基板間加入氮氣的改造,進行實驗。 結果顯示三種膜質(Al、Mo、PR)的基板經由準分子紫外光照射的積算光量越大,其基板表面的純水接觸角會越小,但經過靜置後其基板表面的純水接觸角會慢慢變大,其中靜置時間在6小時以內的純水接觸角退化速度是最快的,之後靜置6至24小時的退化速度將會趨緩。此外,基板經過加入氮氣改善後的準分子紫外光照射設備的照射,可以使基板上的純水接觸角降低達90.9 %,比起照射未改善前的準分子紫外光照射設備後的純水接觸角,降幅增加了71.8 %,並可以使恰當蝕刻時間減少約4.54秒,因而降低物理氣相沉積製程造成的奇、偶數片膜厚不同且不均的負面影響,進而能加快設備的產出時間。 之後我們利用六代產線進行為期一週,樣品數約為21,223片的驗證,得到在準分子紫外光照射設備與基板間加入氮氣的改善,能在不降低基板傳送速度而影響設備產出時間的情況下,讓基板表面的純水接觸角降至10度以下,使濕蝕刻後的金屬殘留缺陷數降低達75 %,良率大約從99.2 %提升到99.28 %,而且之後抽樣檢測率、第五道製程後的雷射修補率、缺陷影像檢視人力、因拔膜重工所耗損的生產原料、薄膜電晶體液晶顯示器的陣列製程產出週期等,都可以降低。也證明基板表面的純水接觸角越低,在濕蝕刻製程中造成的金屬殘留缺陷也會越低。
The metal wet etch process in the thin film transistor liquid crystal display (TFT-LCD) , the excimer UV is usually used to irradiate the substrate to reduce the contact angle of DI water on its surface by removing the oil or organic matter. The aluminum etching solution can be more easily attached to the substrate surface, and can avoid the air bubbles generated in the wet etching process to the substrate, resulting from the low contact angle. Therefore, it can reduce the residue defects of metal in the wet etching process. But for the requirements of high throughput in the mass production, it shows the low performance of the excimer UV irradiation devices, and the number of residue defects in the wet etching process is still high. Therefore, in this study, we use the different metals and photoresist as the substrates to investigate the efficiency of the excimer UV irradiation with or without adding nitrogen purge. The experiment results give out the conclusions as following:the contact angle of DI water on the surface of three different films- Al、Mo、PR becomes smaller after the larger integral UV intensity irradiated by excimer UV. However, the contact angle of DI water would become bigger after stationary for a long time. The fastest degraded speed of the contact angle of DI water occurs in the first six hours, and it degrades slowly between six and twenty-four hours. In addition, the substrate which is irradiated by the excimer UV irradiation device with adding nitrogen achieves the reduction of the contact angle of DI water by 90.9% and the decrement of contact angle increases by 71.8% than that without adding nitrogen. The just etching time of the metal wet etching is decreased by 4.54 s. By utilizing the excimer UV device with nitrogen blowing, we could reduce the negative effects of different films thickness and unevenness on odd or even film status caused by sputtering machine; meanwhile, we could accelerate the output time of the excimer UV device. After that, we use the six-generation production line to implement a one-week test with 21,223 panels and obtain a great improvement by adding nitrogen into the substrate and excimer UV irradiation device. By above technique, it reduces the contact angle of DI water on the substrate to be under 10o and also lowers the percent of metal residues by 75% after wet etching. The product yield approximately rises from 99.2% to 99.28% and the experiment result also shows that it also reduces the sampling test rate, the laser repair rate of the PEP5, the manpower of examining the defect images, the wasted production materials due to rework, and the array process of manufacturing TFT-LCD. The experiment also demonstrates that the lower contact angle of DI water on the surface of substrate, the lower metal residues caused by wet etching process.
URI: http://hdl.handle.net/11455/6074
其他識別: U0005-0208201101233800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0208201101233800
Appears in Collections:電機工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.