Please use this identifier to cite or link to this item:
標題: 雞基因體內蛋白質基因的增加與消失之比較分析
Comparative analysis chicken genome to identify the gain & loss of protein-coding genes in evolution
作者: 劉濟輝
Liu, Ji-Hui
關鍵字: 基因同線性
出版社: 基因體暨生物資訊學研究所
引用: 1. Doolittle, W.F., You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet, 1998. 14(8): p. 307-11. 2. Doolittle, W.F., Lateral genomics. Trends Cell Biol, 1999. 9(12): p. M5-8. 3. Pennisi, E., Genome data shake tree of life. Science, 1998. 280(5364): p. 672-4. 4. Gibbs, R.A., et al., Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 2004. 428(6982): p. 493-521. 5. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921. 6. Waterston, R.H., et al., Initial sequencing and comparative analysis of the mouse genome. Nature, 2002. 420(6915): p. 520-62. 7. Dufayard, J.F., et al., Tree pattern matching in phylogenetic trees: automatic search for orthologs or paralogs in homologous gene sequence databases. Bioinformatics, 2005. 21(11): p. 2596-603. 8. Goodstadt, L. and C.P. Ponting, Phylogenetic reconstruction of orthology, paralogy, and conserved synteny for dog and human. PLoS Comput Biol, 2006. 2(9): p. e133. 9. Korf, I., et al., Integrating genomic homology into gene structure prediction. Bioinformatics, 2001. 17 Suppl 1: p. S140-8. 10. Parra, G., et al., Comparative gene prediction in human and mouse. Genome Res, 2003. 13(1): p. 108-17. 11. Lunter, G., C.P. Ponting, and J. Hein, Genome-wide identification of human functional DNA using a neutral indel model. PLoS Comput Biol, 2006. 2(1): p. e5. 12. Pollard, K.S., et al., An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 2006. 443(7108): p. 167-72. 13. Peng, Q., P.A. Pevzner, and G. Tesler, The fragile breakage versus random breakage models of chromosome evolution. PLoS Comput Biol, 2006. 2(2): p. e14. 14. Tesler, G., GRIMM: genome rearrangements web server. Bioinformatics, 2002. 18(3): p. 492-3. 15. Derrien, T., et al., Revisiting the missing protein-coding gene catalog of the domestic dog. BMC Genomics, 2009. 10: p. 62. 16. Clark, A.G., et al., Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007. 450(7167): p. 203-18. 17. Chapman, M.A., et al., Initial genome sequencing and analysis of multiple myeloma. Nature, 2011. 471(7339): p. 467-72. 18. McLean, C.Y., et al., Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature, 2011. 471(7337): p. 216-9. 19. Fitch, W.M., Distinguishing homologous from analogous proteins. Syst Zool, 1970. 19(2): p. 99-113. 20. WM, F., Homology a personal view on some of the problems. Trends Genet, 2000: p. 227-31. 21. Moreno-Hagelsieb, G., et al., Transcription unit conservation in the three domains of life: a perspective from Escherichia coli. Trends Genet, 2001. 17(4): p. 175-7. 22. Hurst, L.D., C. Pal, and M.J. Lercher, The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet, 2004. 5(4): p. 299-310. 23. Derrien, T., et al., AutoGRAPH: an interactive web server for automating and visualizing comparative genome maps. Bioinformatics, 2007. 23(4): p. 498-9. 24. Stanke, M., et al., Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 2008. 24(5): p. 637-44. 25. van Baren, M.J. and M.R. Brent, Iterative gene prediction and pseudogene removal improves genome annotation. Genome Res, 2006. 16(5): p. 678-85. 26. O''Brien, S.J., et al., The promise of comparative genomics in mammals. Science, 1999. 286(5439): p. 458-62, 479-81. 27. Chen, F.C., et al., Human-specific insertions and deletions inferred from mammalian genome sequences. Genome Res, 2007. 17(1): p. 16-22. 28. Han, K., et al., Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages. Nucleic Acids Res, 2005. 33(13): p. 4040-52. 29. Newman, T.L., et al., A genome-wide survey of structural variation between human and chimpanzee. Genome Res, 2005. 15(10): p. 1344-56. 30. Szarski, H., Cell size and nuclear DNA content in vertebrates. Int Rev Cytol, 1976. 44: p. 93-111. 31. Tiersch, T.R. and S.S. Wachtel, On the evolution of genome size of birds. J Hered, 1991. 82(5): p. 363-8. 32. Hughes, A.L. and R. Friedman, Genome size reduction in the chicken has involved massive loss of ancestral protein-coding genes. Mol Biol Evol, 2008. 25(12): p. 2681-8. 33. Wachtel, S.S. and T.R. Tiersch, Variations in genome mass. Comp Biochem Physiol B, 1993. 104(2): p. 207-13. 34. Hughes, A.L. and M.K. Hughes, Small genomes for better flyers. Nature, 1995. 377(6548): p. 391. 35. Gregory, T.R., A bird''s-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class aves. Evolution, 2002. 56(1): p. 121-30. 36. Dalla Valle, L., et al., Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization. Dev Dyn, 2007. 236(7): p. 1939-53. 37. Dalla Valle, L., et al., Cloning and characterization of scale beta-keratins in the differentiating epidermis of geckoes show they are glycine-proline-serine-rich proteins with a central motif homologous to avian beta-keratins. Dev Dyn, 2007. 236(2): p. 374-88. 38. Greenwold, M.J. and R.H. Sawyer, Linking the molecular evolution of avian beta (beta) keratins to the evolution of feathers. J Exp Zool B Mol Dev Evol, 2011. 316(8): p. 609-16. 39. Force, A., et al., Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 1999. 151(4): p. 1531-45. 40. Cho, N.H., et al., The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host-cell interaction genes. Proc Natl Acad Sci U S A, 2007. 104(19): p. 7981-6. 41. Canestro, C., et al., Consequences of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and retinoic acid signaling in vertebrate genomes. PLoS Genet, 2009. 5(5): p. e1000496. 42. Guigo, R., I. Muchnik, and T.F. Smith, Reconstruction of ancient molecular phylogeny. Mol Phylogenet Evol, 1996. 6(2): p. 189-213. 43. Cotton, J.A. and R.D. Page, Rates and patterns of gene duplication and loss in the human genome. Proc Biol Sci, 2005. 272(1560): p. 277-83. 44. Page, R.D. and J.A. Cotton, Vertebrate phylogenomics: reconciled trees and gene duplications. Pac Symp Biocomput, 2002: p. 536-47. 45. Postlethwait, J.H., The zebrafish genome in context: ohnologs gone missing. J Exp Zool B Mol Dev Evol, 2007. 308(5): p. 563-77. 46. Semon, M. and K.H. Wolfe, Reciprocal gene loss between Tetraodon and zebrafish after whole genome duplication in their ancestor. Trends Genet, 2007. 23(3): p. 108-12. 47. Hallstrom, B.M. and A. Janke, Resolution among major placental mammal interordinal relationships with genome data imply that speciation influenced their earliest radiations. BMC Evol Biol, 2008. 8: p. 162. 48. Burge, C. and S. Karlin, Prediction of complete gene structures in human genomic DNA. J Mol Biol, 1997. 268(1): p. 78-94. 49. Yeh, R.F., L.P. Lim, and C.B. Burge, Computational inference of homologous gene structures in the human genome. Genome Res, 2001. 11(5): p. 803-16. 50. Conesa, A., et al., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005. 21(18): p. 3674-6. 51. Boguski, M.S., T.M. Lowe, and C.M. Tolstoshev, dbEST--database for "expressed sequence tags". Nat Genet, 1993. 4(4): p. 332-3. 52. Sayers, E.W., et al., Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 2012. 40(1): p. D13-25. 53. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10. 54. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402. 55. Kent, W.J., BLAT--the BLAST-like alignment tool. Genome Res, 2002. 12(4): p. 656-64. 56. Lukashev, A.N., Role of recombination in evolution of enteroviruses. Rev Med Virol, 2005. 15(3): p. 157-67. 57. Slater, G.S. and E. Birney, Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics, 2005. 6: p. 31. 58. Postlethwait, J.H., et al., Vertebrate genome evolution and the zebrafish gene map. Nat Genet, 1998. 18(4): p. 345-9. 59. Min, X.J., et al., TargetIdentifier: a webserver for identifying full-length cDNAs from EST sequences. Nucleic Acids Res, 2005. 33(Web Server issue): p. W669-72. 60. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 2004. 432(7018): p. 695-716. 61. Gordon, L., et al., Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions. Genome Res, 2007. 17(11): p. 1603-13. 62. Sire, J.Y., S.C. Delgado, and M. Girondot, Hen''s teeth with enamel cap: from dream to impossibility. BMC Evol Biol, 2008. 8: p. 246. 63. Krauss, S., J.P. Concordet, and P.W. Ingham, A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell, 1993. 75(7): p. 1431-44. 64. Ekker, S.C., et al., Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr Biol, 1995. 5(8): p. 944-55. 65. Currie, P.D. and P.W. Ingham, Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature, 1996. 382(6590): p. 452-5. 66. Kumar, S., K.A. Balczarek, and Z.C. Lai, Evolution of the hedgehog gene family. Genetics, 1996. 142(3): p. 965-72. 67. Ingham, P.W. and A.P. McMahon, Hedgehog signaling in animal development: paradigms and principles. Genes Dev, 2001. 15(23): p. 3059-87. 68. Sreenath, T., et al., Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J Biol Chem, 2003. 278(27): p. 24874-80. 69. Harris, M.P., et al., The development of archosaurian first-generation teeth in a chicken mutant. Curr Biol, 2006. 16(4): p. 371-7. 70. Hahm, S., et al., Targeted deletion of the Vgf gene indicates that the encoded secretory peptide precursor plays a novel role in the regulation of energy balance. Neuron, 1999. 23(3): p. 537-48. 71. Bartolomucci, A., et al., TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity. Proc Natl Acad Sci U S A, 2006. 103(39): p. 14584-9. 72. Bozdagi, O., et al., The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism. J Neurosci, 2008. 28(39): p. 9857-69. 73. Suzuki, A., M. Tsuda, and Y. Saga, Functional redundancy among Nanos proteins and a distinct role of Nanos2 during male germ cell development. Development, 2007. 134(1): p. 77-83. 74. Tsuda, M., et al., Conserved role of nanos proteins in germ cell development. Science, 2003. 301(5637): p. 1239-41. 75. Bitgood, M.J., L. Shen, and A.P. McMahon, Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol, 1996. 6(3): p. 298-304. 76. Clark, A.M., K.K. Garland, and L.D. Russell, Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod, 2000. 63(6): p. 1825-38. 77. Tregaskes, C.A., et al., Chicken B-cell marker chB6 (Bu-1) is a highly glycosylated protein of unique structure. Immunogenetics, 1996. 44(3): p. 212-7. 78. Pifer, J., D. Robison, and P.E. Funk, The avian ChB6 alloantigen triggers apoptosis in a mammalian cell line. J Immunol, 2002. 169(3): p. 1372-8. 79. Bai, J., L.N. Payne, and M.A. Skinner, HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses. J Virol, 1995. 69(2): p. 779-84. 80. Gimpl, G. and F. Fahrenholz, The oxytocin receptor system: structure, function, and regulation. Physiol Rev, 2001. 81(2): p. 629-83. 81. Zingg, H.H. and S.A. Laporte, The oxytocin receptor. Trends Endocrinol Metab, 2003. 14(5): p. 222-7. 82. Kiss, A. and J.D. Mikkelsen, Oxytocin--anatomy and functional assignments: a minireview. Endocr Regul, 2005. 39(3): p. 97-105. 83. Veenema, A.H. and I.D. Neumann, Central vasopressin and oxytocin release: regulation of complex social behaviours. Prog Brain Res, 2008. 170: p. 261-76. 84. Hammond, G.L. and W.P. Bocchinfuso, Sex hormone-binding globulin: gene organization and structure/function analyses. Horm Res, 1996. 45(3-5): p. 197-201. 85. Rosner, W., et al., Sex hormone-binding globulin mediates steroid hormone signal transduction at the plasma membrane. J Steroid Biochem Mol Biol, 1999. 69(1-6): p. 481-5.
摘要: 依據演化的概念,目前的各種動物皆來自共同的祖先。而由分子演化來說,這些物種若親緣關係愈相近,則它們的基因體序列中相同的序列也愈多。雞在演化中具有獨特的地位,其鳥祖先在演化中,約在310百萬年前分支出來,所以其生長發育與一般哺乳類不同。因此為了研究雞演化的過程,我們利用已公開發表人類、斑馬魚和雞的基因體序列為基礎,執行比較基因體學(comparative genomics)分析。雞的基因註解數目~17000遠不如班馬魚註解數目(>30000),約有~12000筆基因差距。雖然雞基因體有5%未定序大約只包含~900個基因,但依比率推算還有更多基因未被註解,不代表雞在演化中失去了12000個基因,我們推論在目前的註解中有太多基因尚未被註解,因此為更完整的標註未註解的基因,我們整合NCBI(National Center for Biotechnology Information)的nr和EST資料庫,將雞的基因序列以更詳細的註解。最後我們推論雞有2131筆遺失基因,70筆可能存在的基因及2693筆獨特基因,依據預測遺失基因及獨特基因之結果,推測基因性狀間的關係,分別有不同的特徵,可以幫助我們瞭解特殊基因的作用與在演化中的角色。
According to the concept of evolution, the diversity of animals originated from a common ancestry, and the more closely related species have more similarities among their genome sequences. Chicken ancestor had diverged from mammals about 310 million years ago. To study phylogenetic evolution and genetic diversity of the chicken, we used human, zebrafish and chicken as representatives to build a comparative genomics analysis. Since chicken gene annotation (~17000) is lower than zebrafish in Ensembl database (over 30000), we think there are more genes that haven't been annotated, though with 5% chicken genome not been sequenced. Therefore we verified gene annotation of chicken through the nr and EST databases of NCBI (National Center for Biotechnology Information) to avoid excessive gene-loss analysis. We found that there are 2131 genes lost, 70 newly annotated genes and 2693 unique genes gained in evolution. We expect these results can narrow the gap between our understanding of evolution biology and molecular genomics.
其他識別: U0005-0902201213144900
Appears in Collections:基因體暨生物資訊學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.