請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/60839
標題: 人類蛋白異構體交互作用網路之機率模型
Probabilistic model of human isoform interaction network
作者: 曾毓婷
Tseng, Yu-Ting
關鍵字: Protein isoform
蛋白異構體
Bayesian probability model
Isoform-isoform interactions
貝葉斯機率模型
蛋白質異構體交互作用預測
出版社: 基因體暨生物資訊學研究所
引用: 1. Resch A, Xing Y, Modrek B, Gorlick M, Riley R, Lee C: Assessing the impact of alternative splicing on domain interactions in the human proteome. J Proteome Res 2004, 3(1):76-83. 2. Wang RS, Wang Y, Wu LY, Zhang XS, Chen L: Analysis on multi-domain cooperation for predicting protein-protein interactions. BMC Bioinformatics 2007, 8:391. 3. Huang TW, Tien AC, Huang WS, Lee YC, Peng CL, Tseng HH, Kao CY, Huang CY: POINT: a database for the prediction of protein-protein interactions based on the orthologous interactome. Bioinformatics 2004, 20(17):3273-3276. 4. Lee SA, Chan CH, Tsai CH, Lai JM, Wang FS, Kao CY, Huang CY: Ortholog-based protein-protein interaction prediction and its application to inter-species interactions. BMC Bioinformatics 2008, 9 Suppl 12:S11. 5. Pedamallu CS, Posfai J: Open source tool for prediction of genome wide protein-protein interaction network based on ortholog information. Source Code Biol Med 2010, 5:8. 6. Hue M, Riffle M, Vert JP, Noble WS: Large-scale prediction of protein-protein interactions from structures. BMC Bioinformatics 2010, 11:144. 7. Craig RA, Liao L: Improving protein-protein interaction prediction based on phylogenetic information using a least-squares support vector machine. Ann Ny Acad Sci 2007, 1115:154-167. 8. Gonzalez AJ, Liao L: Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines. BMC Bioinformatics 2010, 11:537. 9. Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili A, Snyder M, Greenblatt JF, Gerstein M: A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 2003, 302(5644):449-453. 10. Rhodes DR, Tomlins SA, Varambally S, Mahavisno V, Barrette T, Kalyana-Sundaram S, Ghosh D, Pandey A, Chinnaiyan AM: Probabilistic model of the human protein-protein interaction network. Nat Biotechnol 2005, 23(8):951-959. 11. Scott MS, Barton GJ: Probabilistic prediction and ranking of human protein-protein interactions. BMC Bioinformatics 2007, 8:239. 12. McDowall MD, Scott MS, Barton GJ: PIPs: human protein-protein interaction prediction database. Nucleic Acids Res 2009, 37(Database issue):D651-656. 13. Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A et al: The UCSC Genome Browser database: update 2011. Nucleic Acids Res 2011, 39(Database issue):D876-882. 14. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A et al: IntAct: an open source molecular interaction database. Nucleic Acids Res 2004, 32(Database issue):D452-455. 15. Leinonen R, Sugawara H, Shumway M: The sequence read archive. Nucleic Acids Res 2011, 39(Database issue):D19-21. 16. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. 17. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5):511-515. 18. Yellaboina S, Tasneem A, Zaykin DV, Raghavachari B, Jothi R: DOMINE: a comprehensive collection of known and predicted domain-domain interactions. Nucleic Acids Res 2011, 39(Database issue):D730-735. 19. Raghavachari B, Tasneem A, Przytycka TM, Jothi R: DOMINE: a database of protein domain interactions. Nucleic Acids Res 2008, 36(Database issue):D656-661. 20. Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE: Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr 1998, 54(Pt 6 Pt 1):1078-1084. 21. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C et al: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004, 32(Database issue):D258-261. 22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25(1):25-29. 23. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 2010, 38(Database issue):D142-148. 24. Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y, Han JD, Bertin N, Chung S, Vidal M, Gerstein M: Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res 2004, 14(6):1107-1118. 25. Gasteiger E, Jung E, Bairoch A: SWISS-PROT: connecting biomolecular knowledge via a protein database. Curr Issues Mol Biol 2001, 3(3):47-55. 26. O''Donovan C, Martin MJ, Gattiker A, Gasteiger E, Bairoch A, Apweiler R: High-quality protein knowledge resource: SWISS-PROT and TrEMBL. Brief Bioinform 2002, 3(3):275-284. 27. Kent WJ: BLAT--the BLAST-like alignment tool. Genome Res 2002, 12(4):656-664. 28. Asthana S, King OD, Gibbons FD, Roth FP: Predicting protein complex membership using probabilistic network reliability. Genome Res 2004, 14(6):1170-1175. 29. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL et al: The Pfam protein families database. Nucleic Acids Res 2004, 32(Database issue):D138-141. 30. Davis J, Goadrich M: The Relationship Between Precision-Recall and ROC Curves. In: International Conference on Machine Learning. Pittsburgh; 2006. 31. Briesemeister S, Rahnenfuhrer J, Kohlbacher O: YLoc--an interpretable web server for predicting subcellular localization. Nucleic Acids Res 2010, 38(Web Server issue):W497-502. 32. Chou KC, Shen HB: Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 2008, 3(2):153-162. 33. Scott MS, Thomas DY, Hallett MT: Predicting subcellular localization via protein motif co-occurrence. Genome Res 2004, 14(10A):1957-1966.
摘要: 蛋白質交互作用是生物體產生各種功能的基礎。透過蛋白質交互作用的研究,可以理解細胞運作的基本原理,進而開發、設計藥物,並針對疾病進行治療。蛋白異構體 (isoform) 是指同一基因經由選擇性剪接 (alternative splicing) 所產生的不同產物,若能進一步了解蛋白異構體的交互作用,不論在基礎或臨床的研究上都非常重要。而近幾年高通量mRNA定序 (RNA-Seq) 提供了蛋白異構體表現量之數據,有利於我們更深入地了解蛋白異構體之交互作用。 本篇研究主要是以貝葉斯機率模型 (Bayesian probability model) 為基礎,有效地整合不同型態的資料,分別是蛋白質異構體表現量 (isoform expression)、蛋白質功能域交互作用 (domain-domain interactions dataset)、基因註解 (gene ontology, GO) 以及直系人類同源蛋白 (orthologous human proteins) 資料,作為我們預測蛋白質異構體交互作用的推論證據。最後,我們將預測結果與其他預測方法進行比較,並且試圖建構出更完整的人類蛋白異構體交互作用網路。
Protein interactions are the basis of organism functions. Through protein interaction studies, we can understand the basic principles of cell activity. Then develop and design drugs for the disease treatment. Protein isoforms is generated by alternative splicing from the same gene. If we have deeply understanding of the interactions of protein isoforms, either in basic or clinical research is very important. In recent years, high-throughput mRNA sequencing (RNA-Seq) provides isoform-level expression data, which helps us further understanding the interactions of protein isoforms. This study is based on Bayesian probabilistic model to effectively integrate different types of information: the mRNA expression, domain-domain interactions, gene annotation and Orthologous human protein datasets, as the inference evidence of isoform-isoform interaction prediction. Finally, we compared the predicted results with other prediction methods, and attempted to construct complete human isoform-isoform interaction networks.
URI: http://hdl.handle.net/11455/60839
其他識別: U0005-2206201102184900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2206201102184900
顯示於類別:基因體暨生物資訊學研究所

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。