Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/6444
DC FieldValueLanguage
dc.contributor李敏鴻zh_TW
dc.contributorMin-Hung Leeen_US
dc.contributor李勝偉zh_TW
dc.contributor張守進zh_TW
dc.contributor陳奕君zh_TW
dc.contributorSheng-Wei Leeen_US
dc.contributorShoou-Jinn Changen_US
dc.contributorI-Chun Chengen_US
dc.contributor.advisor裴靜偉zh_TW
dc.contributor.advisorZingway Peien_US
dc.contributor.author黃鼎翔zh_TW
dc.contributor.authorHuang, Ting-Hsiangen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:38:11Z-
dc.date.available2014-06-06T06:38:11Z-
dc.identifierU0005-1508201110170200zh_TW
dc.identifier.citation[1] P. K. Weimer, “The TFT A New Thin-Film Transistor”, Proceedings of the Institute of Radio Engineers, vol. 50, pp. 1462-1469, 1962. [2] T. P. Brody, J. A. Asars, G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel”, IEEE Trans. Electron Devices, vol. 20, pp. 995-1001, 1973. [3] A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. LeComber, A. J. Hughes, “Application of amorphous silicon field effect transistors in addressable liquid crystal display panels”, Appl. Phys., vol. 24, pp. 357-362, 1981. [4] Robert A. Street, “Thin-Film Transistors”, Adv. Mater., vol. 21, pp. 2007-2022, 2009. [5] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, vol. 432, pp. 488-492, 2004. [6] J. K. Jeong, J. H. Jeong, H. W. Yang, J. -S. Park, Y. -G. Mo, H. D. Kim, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel”, Appl. Phys. Lett., vol. 91, p. 113505, 2007. [7] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. -S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper”, Appl. Phys. Lett., vol. 90, p. 212114, 2007. [8] J.-S. Park, J. K. Jeong, Y. -G. Mo, H. D. Kim, S. I. Kim, “Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment”, Appl. Phys. Lett., vol. 90, p. 262106, 2007. [9] H. -H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, C. -C. Wu, “Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states”, Appl. Phys. Lett., vol. 92, p. 133503, 2008. [10] H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, “Amorphous oxide channel TFTs”, Thin Solid Films, vol. 516, pp. 1516-1522, 2008. [11] T. Arai, N. Morosawa, K. Tokunaga, Y. Terai, E. Fukumoto, T. Fujimori, T. Nakayama, T. Yamaguchi, T. Sasaoka, “69.2: Highly reliable oxide-semiconductor TFT for AM-OLED display”, in Proc. SID Dig., 2010, pp. 1033-1036. [12] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim, S. S. Kim, “69.3: Amorphous oxide TFT backplane for large size AMOLED TVs”, Proc. SID Dig., 2010, pp. 1037-1040. [13] T. Kamiya, H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors”, NPG Asia mater., vol. 2, pp. 15-22, 2010. [14] R. L. Hoffman, B. J. Norris, J. F. Wager, “ZnO-based transparent thin-film transistors”, Appl. Phys. Lett., vol. 82, p.733, 2003. [15] D. C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, “Amorphous IZO-based transparent thin film transistors”, Thin Solid Films, vol. 516, pp. 5894-5898, 2008. [16] H. Q. Chiang, J. F. Wager, R. L. Hoff man, J. Jeong, D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer”, Appl. Phys. Lett., vol. 86, p. 013503, 2005. [17] F. Ebisawa, T. Kurokawa, S. Nara, “Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys., vol. 54, pp. 3255-3259, 1983. [18] A. Tsumura, H. Koezuka, T. Ando, “Macromolecular electronic device: field‐effect transistor with a polythiophene thin film”, Appl. Phys. Lett., vol. 49, p. 1210, 1986. [19] H. Koezuka, A. Tsumura, T. Ando, “Field-effect transistor with polythiophene thin film”, Synthetic Metals, vol. 18, pp. 699-704, 1987. [20] G. Horowitz, X. Peng, D. Fichou, F. Garnier, “The oligothiophene‐based field‐effect transistor: How it works and how to improve it”, J. Appl. Phys., vol. 67, pp. 528-532,1990. [21] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Lanveld-Voss, A. J. H. Spiering, R. A. J. Jannsen, E. W. Meijer, P. Herwig, D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, vol. 401, pp. 685-688, 1999. [22] P.-Y. Lo, P.-W. Li, Z.-W. Pei, J. Hou, Y.-J. Chan, “Enhanced P3HT OTFT transport performance using double gate modulation scheme”, IEEE Electron Device Lett., vol. 30, pp. 629-631, 2009. [23] Y.-Y. Lin, D. J. Gundlach, S.F. Nelson, T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics”, IEEE Electron Device Lett., vol. 18, pp. 606-608, 1997. [24] S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, “Temperature-independent transport in high-mobility pentacene transistors”, Appl. Phys. Lett., vol. 72, p. 1854, 1998. [25] S. E. Fritz, T. W. Kelley, C. Daniel Frisbie, “Effect of Dielectric Roughness on Performance of Pentacene TFTs and Restoration of Performance with a Polymeric Smoothing Layer”, J. Phys. Chem. B, vol. 109, p. 10574-10577, 2005. [26] W. Kalb, P. Lang, M. Mottaghi, H. Aubin, G. Horowitz, M. Wuttig, “Structure-performance relationship in pentacene/Al2O3 thin-film transistors”, Synth. Met., vol. 146, pp. 279-282, 2004. [27] D. Knipp, R. A. Street, A. Volkel, J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport”, J. Appl. Phys., vol. 93, p. 347-355, 2003. [28] L. Zhou, S. Park, B. Bai, J. Sun, S.-C. Wu, T. N. Jackson, S. Nelson, D. Freeman, Y. Hong, “Pentacene TFT driven AM OLED displays”, IEEE Electron Device Lett., vol. 26, pp. 640-642, 2005. [29] M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito T. Kurita, “Flexible AM OLED panel driven by bottom-contact OTFTs”, IEEE Electron Device Lett., vol. 27, pp. 249-251, 2006. [30] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D. Theiss, “Pentacene-based radio-frequency identification circuitry”, Appl. Phys. Lett., vol. 82, p. 3964, 2003. [31] T. N. Jackson, Y.-Y. Lin, D. J. Gundlach, H. Klauk, “Organic thin-film transistors for organic light-emitting flat-panel display backplanes”, IEEE J. Sel. Top. Quantum Electron., vol. 4, pp. 100-104, 1998. [32] E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, D. M. de Leeuw, “A 13.56-MHz RFID System Based on Organic Transponders”, IEEE J. Solid-State Circuit, vol. 42, pp. 84-92, 2007. [33] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications”, Proc. Natl. Acad. Sci. U. S. A., vol. 101, pp. 9966-9970, 2004. [34] T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, T. Sakurai, “Integration of organic FETs with organic photodiodes for a large area, flexible, and lightweight sheet image scanners”, IEEE Trans. Electron Devices, vol. 52, pp. 2502-2511, 2005. [35] S. C. B. Mannsfeld, B. C-K. Tee, R. M. Stoltenberg, C. V. H-H. Chen, S. Barman, B. V. O. Muir1, A. N. Sokolov, C. Reese Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers”, Nat. Mater., vol. 9, pp. 859-864, 2010. [36] E. J. Meijer, C. Detcheverry, P. J. Baesjou, E. van Veenendaal, D. M. de Leeuw, T. M. Klapwijk, “Dopant density determination in disordered organic field-effect transistors”, J. Appl. Phys., vol. 93, pp. 4831-4835, 2003. [37] C. R. Newman, C. D. Frisbie, D. A. S. Filho, J. -L. Bredas, P. C. Ewbank, K. R. Mann, “Introduction to organic thin film transistors and design of n-channel organic semiconductors”, Chem. Mater., vol. 16, pp. 4436-4451, 2004. [38] T.-S. Huang, Y.-K. Su, P.-C. Wang, “Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer”, Appl. Phys. Lett., vol. 91, p. 092116, 2007. [39] H. Klauk, M. Halik, U. Zschieschang, F. Eder, G. Schmid, C. Dehm, “Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates”, Appl. Phys. Lett., vol. 82, p. 4175, 2003. [40] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors”, J. Appl. Phys., vol. 92, pp. 5259-5263, 2002. [41] H. -L. Hsu, W. -C. Yang, Y. -L. Lee, T. -R. Yew, “Polyacrylonitrile as a gate dielectric material”, Appl. Phys. Lett., vol. 91, p. 023501, 2007. [42] S. Y. Park, M. Park, H. H. Lee, “Cooperative polymer gate dielectrics in organic thin-film transistors”, Appl. Phys. Lett., vol. 85, p. 2283, 2004. [43] H. Yan, Z. Chen, Y. Zheng, C. Newman, J.R. Quinn, F. Dotz, M. Kastler, A. Facchetti, “A high-mobility electron-transporting polymer for printed transistors”, Nature, vol. 457, pp. 679-686, 2009. [44] A. Benor, A. Hoppe, V. Wagner, D. Knipp, “Electrical stability of pentacene thin film transistors”, Org. Electron., vol. 8, pp. 749-758, 2007. [45] L. Fumagalli, D. Natali, M. Sampietro, E. Peron, F. Perissinotti, G. Tallarida, S. Ferrari, “Al2O3 as gate dielectric for organic transistors: Charge transport phenomena in poly-(3-hexylthiophene) based devices”, Org. Electron., vol. 9, pp. 198-208, 2008. [46] A. Facchetti, M. -H. Yoon, T. J. Marks, “Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics”, Adv. Mater., vol. 17, pp. 1705-1725 , 2005. [47] M. -H. Yoon, C. Kim, A. Facchetti, T. J. Marks, “Gate dielectric chemical structure−organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors”, J. Am. Chem., Soc., vol. 128, pp. 12851-12869, 2006. [48] O. Acton, G. Ting, H. Ma, J. W. Ka, H. -L. Yip, N. M. Tucker, A. K. -Y. Jen, “π-σ-Phosphonic acid organic monolayer/sol-gel hafnium oxide hybrid dielectrics for low-voltage organic transistors”, Adv. Mater., vol. 20, pp. 3697-3701, 2008. [49] L. Manchanda, M. Gurvitch, “Yttrium oxide/silicon dioxide: a new dielectric structure for VLSI/ULSI circuits”, IEEE Electron. Dev. Lett., vol. 9, pp. 180-182, 1988. [50] C. Bartic, H. Jansen, A. Campitelli, S. Borghs, “Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors”, Org. Electron., vol. 3, pp. 65-72, 2002. [51] L. A. Majewski, R. Schroeder, M. Grell, “One volt organic transistor”, Adv. Mater., vol. 17, pp. 192-196, 2005. [52] K. P. Pande, V. K. R. Nair, D. Gutierrez, “Plasma enhanced metal‐organic chemical vapor deposition of aluminum oxide dielectric film for device applications”, J. Appl. Phys., vol. 54, pp. 5436-5440, 1983. [53] W. S. Hu, Y. T. Tao, Y. J. Hsu, D. H. Wei, Y. S. Wu, “Molecular orientation of evaporated pentacene films on gold: alignment effect of self-assembled monolayer”, Langmuir, vol. 21, pp. 2260-2266, 2005. [54] R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K. -C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, G. G. Malliaras, Chem. Mater., “Pentacene thin film growth”, vol. 16, pp. 4497-4508, 2004. [55] S. E. Fritz, T. W. Kelley, C. D. Frisbie, “Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer”, J. Phys. Chem. B, vol. 109, pp. 10574-10577, 2005. [56] J. Zhang, J. P. Rabe, N. Koch, “Grain-boundary evolution in a pentacene monolayer”, Adv. Mater., vol. 20, pp. 3254- 3257, 2008. [57] M. Zirkl, A. Haase, A. Fian, H. Schon, C. Sommer, G. Jakopic, G. Leising, B. Stadlober, I. Graz, N. Gaar, R. Schwodiauer, S. Bauer-Gogonea, S. Bauer, “Low-voltage organic thin-film transistors with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors”, Adv. Mater., vol. 19, pp. 2241-2245, 2007. [58] D. K. Hwang, C. S. Kim, J. M. Choi, K. Lee, J. H. Park, E. Kim, H. K. Baik, J. H. Kim, S. Im, “Polymer/YOx hybrid-sandwich gate dielectrics for semitransparent pentacene thin-film transistors operating under 5V”, Adv. Mater., vol. 18, pp. 2299-2303, 2006. [59] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schutz, S. Maisch, F. Effenberger, M. Brunnbauer, F. Stellacci, “Low-voltage organic transistors with an amorphous molecular gate dielectric”, Nature, vol. 431, pp. 963-966, 2004. [60] H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, “Ultralow-power organic complementary circuits”, Nature, vol. 445, pp. 745-748, 2007. [61] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, K. Cho, “Enhancement of field-effect mobility due to surface-mediated molecular ordering in regioregular polythiophene thin film transistors”, Adv. Funct. Mater., vol. 15, pp. 77-82, 2005. [62] M. -H. Yoon, A. Facchetti, T. J. Marks, “σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors”, Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 4678-4682, 2005. [63] S. Tatemichi, M. Ichikawa, T. Koyama Y. Taniguchi, “High mobility n-type thin-film transistors based on N, N'-ditridecyl perylene diimide with thermal treatments”, Appl. Phys. Lett., vol. 89, p. 112108, 2006. [64] H. -G. Jeon, J. Hattori, S. Kato, N. Oguma, N. Hirata, Y. Taniguchi, M. Ichikawa, “Thermal treatment effects on N-alkyl perylene diimide thin-film transistors with different alkyl chain”, J. Appl. Phys., vol. 108, p. 124512, 2010. [65] J. Jang, S. Nam, D. S. Chung, S. H. Kim, W. M. Yun, C. E. Park, “High Tg Cyclic Olefin Copolymer Gate Dielectrics for N,N'-Ditridecyl Perylene Diimide Based Field-Effect Transistors: Improving Performance and Stability with Thermal Treatment”, Adv. Funct. Mater., vol. 20, pp. 2611-2618, 2010. [66] S. Tanida, K. Noda, H. Kawabata K. Matsushige, “Ultrathin polymer gate buffer layer for air-stable, low-voltage, n-channel organic thin-film transistors”, Polym. Adv. Technol., vol. 21, pp. 528-532, 2010. [67] P. Mansky, Y. Liu, E. Huang, T. P. Russell, C. Hawker, “Controlling polymer-surface interactions with random copolymer brushes”, Science, vol. 275, pp. 1458-1460 , 1997. [68] B. Zhang, F. D. Blum, “Modulated Differential Scanning Calorimetry of Ultrathin Adsorbed PS-r-PMMA Copolymers on Silica”, Macromolecules, vol. 36, pp. 8522-8527, 2003. [69] O. K. C. Tsui, T. P. Russell, C. J. Hawker, Macromolecules, “Effect of interfacial interactions on the glass transition of polymer thin films”, vol. 34, pp. 5535-5539, 2001. [70] P. S. Jo, J. Sung, C. Park, E. Kim, D. Y. Ryu, S. Pyo, H. -C. Kim, J. M. Hong, “Controlled topology of block copolymer gate insulators by selective etching of cylindrical microdomains in pentacene organic thin film transistors”, Adv. Funct. Mater., vol. 18, pp. 1202-1211, 2008. [71] Y. Taur, E. J. Nowak, “CMOS devices below 0.1 μm: how high will performance go?”, IEDM Tech. Dig., 1997, pp. 215-218. [72] Y. -Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Electron Device Lett., vol. 18, pp. 606-608, 1997. [73] A. -L. Deman, J. Tardy, “PMMA-Ta2O5 bilayer gate dielectric for low operating voltage organic FETs”, Org. Electron., vol. 6, pp. 78-84, 2005. [74] C. -Y. Wei, F. Adriyanto, Y. -J. Lin, Y. -C. Li, T. -J. Huang, D. -W. Chou, Y. -H. Wang, “Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator”, IEEE Electron Device Lett., vol. 30, pp. 1039-1041, 2009. [75] T. -H. Huang, H. -C. Huang, Z. Pei, “Temperature-dependent ultra-thin polymer layer for low voltage organic thin-film transistors”, Org. Electron., vol. 11, pp. 618-625, 2010. [76] J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, S. M. Khaffaf, “Low-k insulators as the choice of dielectrics in organic field-effect transistors”, Adv. Funct. Mater., vol. 13, pp. 199-204, 2003. [77] C. A. Dimitriadis, P. A. Coxon, L. Dozsa, L. Papadimitriou, N. Economou, “Performance of thin-film transistors on polysilicon films grown by low-pressure chemical vapor deposition at various pressures”, IEEE Trans. Electron Devices, vol. 39, pp. 598-606, 1992. [78] S. H. Kim, S. Nam, J. Jang, K. Hong, C. Yang, D. S. Chung, C. E. Park, W. -S. Choi, “Effect of the hydrophobicity and thickness of polymer gate dielectrics on the hysteresis behavior of pentacene-based field-effect transistors”, J. Appl. Phys., vol. 105, p. 104509, 2009. [79] G. Gu, M. G. Kane, J. E. Doty, A. H. Firester, “Electron traps and hysteresis in pentacene-based organic thin-film transistors”, Appl. Phys. Lett., vol. 87, p. 243512, 2005. [80] G. Gu, M. G. Kane, S. -C. Mau, “Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors”, J. Appl. Phys., vol. 101, p. 014504, 2007. [81] D. K. Hwang, M. S. Oh, J. M. Hwang, J. H. Kim, S. Im, “Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics”, Appl. Phys. Lett., vol. 92, p. 013304, 2008. [82] C. A. Lee, D. -W. Park, K. -D. Jung, B. -J. Kim, Y. C. Kim, J. D. Lee, B. -G. Park, “Hysteresis mechanism in pentacene thin-film transistors with poly(4-vinyl phenol) gate insulator”, Appl. Phys. Lett., vol. 89, p. 262120, 2006. [83] Y. H. Noh, S. Y. Park, S. -M. Seo, H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric”, Org. Electron., vol. 7, pp. 271-275, 2006. [84] S. C. Lim, S. H. Kim, J. B. Koo, J. H. Lee, C. H. Ku, Y. S. Yang, T. Zyung, “Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics”, Appl. Phys. Lett., vol. 90, p. 173512, 2007. [85] J. H. Na, M. Kitamura, and Y. Arakawa, “Organic/inorganic hybrid complementary circuits based on pentacene and amorphous indium gallium zinc oxide transistors”, Appl. Phys. Lett., vol. 93, p. 213505, 2008. [86] D. A. Mourey, S. K. Park, D. A. Zhao, J. Sun, Y. V. Li, S. Subramanian, S. F. Nelson, D. H. Levy, J. E. Anthony, T. N. Jackson, “Fast, simple ZnO/organic CMOS integrated circuits”, Org. Electron., vol. 10, pp. 1632-1635, 2009. [87] X. -H. Zhang, W. J. Potscavage, Jr., S. Choi, and B. Kippelen, “Low-voltage flexible organic complementary inverters with high noise margin and high dc gain”, Appl. Phys. Lett., vol. 94, p. 043312, 2009. [88] W. -Y. Chou, B. -L. Yeh, H. -L. Cheng, B. -Y. Sun, Y. -C. Cheng, Y. -S. Lin, S. -J. Liu, F. -C. Tang, C. -C. Chang, “Organic complementary inverters with polyimide films as the surface modification of dielectrics”, Org. Electron., vol. 10, pp. 1001-1005, 2009. [89] K. N. N. Unni, A. K. Pandey, S. Alem, J. -M. Nunzi, “Ambipolar organic field-effect transistor fabricated by co-evaporation of pentacene and N,N''-ditridecylperylene-3,4,9,10-tetracarboxylic diimide”, Chem. Phys. Lett., vol. 421, pp. 554-557, 2006. [90] F. -C. Chen and C. -H. Liao, “Improved air stability of n-channel organic thin-film transistors with surface modification on gate dielectrics”, Appl. Phys. Lett., vol. 93, p. 103310, 2008. [91] D. J. Gundlach, K. P. Pernstich, G. Wilckens, M. Gruter, S. Haas, and B. Batlogg, “High mobility n-channel organic thin-film transistors and complementary inverters”, J. Appl. Phys., vol. 98, p. 064502, 2005. [92] K. Hong, S. H. Kim, C. Yang, J. Jang, H. Cha, and C. E. Parka, “Improved n-type bottom-contact organic transistors by introducing a poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) coating on the source/drain electrodes”, Appl. Phys. Lett., vol. 97, p. 103304, 2010. [93] S. -M. Kang , Y. Leblebici, CMOS digital integrated circuits : analysis and design. 3rd ed. Iowa : McGraw-Hill, 2003, ch. 5.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/6444-
dc.description.abstract近年來以有機材料為基礎之電子及光電元件的研究日益俱增,其優點為低溫製程,可製作於塑膠基板,且相對低廉與簡易之製作方式,適合溶液製程之大面積生產。於本論文中,吾人使用苯乙烯與甲基丙烯酸甲酯之隨機共聚物(PS-r-PMMA)做為絕緣層,用以實現低電壓Pentacene有機電晶體。PS-r-PMMA厚度可藉由熱處理方式控制於2至14奈米間,以此薄膜做為閘極介電層,Pentacene有機薄膜電晶體可於5V電壓下進行操作。此外,溶液塗佈、升溫烘烤、浸泡清洗之超薄PS-r-PMMA製程步驟有潛力適用於噴墨製程、刮刀塗佈等大面積印製方式,因此隨機共聚物絕緣層於有機電晶體大面積印製之軟性電子應用上係可行的選擇。 本論文中吾人亦利用PS-r-PMMA做為氧化鉿絕緣層之表面修飾層,經PS-r-PMMA修飾後,因氧化鉿表面氫氧基被鈍化,介面狀態減少,使得有機薄膜電晶體可於低電壓下操作外,其電特性亦得到顯著改善。以此電晶體結構,可於130°C 之溫度下,製作低電壓有機薄膜電晶體,此製程溫度已可與一般塑膠基板進行整合。而有機薄膜電晶體之遲滯效應也在內文中有所提及。利用PS-r-PMMA/HfOx 之絕緣層,吾人提出包含p通道Pentacene 薄膜電晶體及n通道PTCDI-C13薄膜電晶體之有機互補式反相器。其中,p通道與n通道電晶體具有平衡的電特性,於10V下,反相器切換電壓為供給電壓之0.5倍,信號增益為45V/V,且具有高的雜訊邊限,可適用於軟性邏輯電路之應用。zh_TW
dc.description.abstractResearch efforts devoted to organic based microelectronic and optoelectronic devices have grown significantly in recent years. The advantages of organic based devices are low processing temperature which is compatible with the plastic substrates, simple processing procedure that is potentially low cost, and solution process that could be produced in large area. In this thesis, a low voltage pentacene organic thin film transistor (OTFT) was accomplished by using a random copolymer, poly(styrene-co-methyl methacrylate) (PS-r-PMMA) as the gate dielectric. The thickness of PS-r-PMMA polymer can be controlled in the range of 2-14 nm by thermal process. By utilizing this copolymer as gate dielectric, pentacene based organic thin-film transistor could be operated at 5V. Furthermore, the coating, annealing and removing sequential process of ultrathin PS-r-PMMA ensure that this technique is potentially compatible with the large area printing methods such as inkjet printing and doctor blade coating. The random copolymer dielectric is therefore a good candidate for OTFT in large area printed flexible electronic applications. In addition, we utilized the PS-r-PMMA as a surface modification layer of hafnium oxide which exist hydroxyl groups on the surface. Due to the reduction of interface states, not only low voltage operation but also improved OTFT properties were obtained by the use of PS-r-PMMA. OTFT with low PS-r-PMMA formation temperature, 130°C, was carried out to prove the compatibility with the general plastic substrate. The hysteresis behavior of the high k based OTFT was also discussed in detail. In chapter 5, we demonstrated an organic complementary inverter composed of p channel Pentacene and n channel PTCDI-C13 organic thin film transistors. By stacking an ultra-thin PS-r-PMMA onto hafnium oxide as dielectrics, two types of transistors exhibit balanced performance. The inverter has good performance with switching voltage around half of supply voltage, signal gain of 45 V/V and high noise margin at 10V, that indicates it is suitable for flexible logic application.en_US
dc.description.tableofcontentsAcknowledgement i Chinese abstract ii English abstract iii Table of contents iv Chapter 1 Introduction 1 1.1 Introduction to thin film transistors 1 1.2 Introduction to organic electronics 3 1.3 Research objective 5 1.4 Thesis outline 5 Chapter 2 Fundamentals of organic thin film transistors and inverters 7 2.1 Organic thin film transistor operation 7 2.1.1 Pentacene-based organic transistor 11 2.1.2 Low voltage operational organic transistor 14 2.1.3 PTCDI-C13-based organic transistor 16 2.1.4 Copolymer dielectrics 18 2.2 Organic inverter static characteristics 19 2.2.1 Voltage transfer characteristic (VTC) 19 2.2.2 Noise margin 20 2.2.3 Complementary metal oxide semiconductor inverter 21 Chapter 3 Low voltage organic thin film transistor 23 3.1 Temperature-dependent polymer layer for low voltage OTFT 23 3.1.1 Experimental details 23 3.1.2 Physical properties of the PS-r-PMMA copolymer 24 3.1.3 Electrical properties of the PS-r-PMMA copolymer 28 3.1.5 Summary 32 3.2 Polymer/high k dielectric bi-layer structure for a low voltage OTFT 33 3.2.1 Experimental details 34 3.2.2 Results and discussion 35 3.2.3 Summary 41 Chapter 4 Hysteresis of organic thin film transistors 42 4.1 Experimental details 42 4.2 Physical properties of the dielectric 43 4.3 Threshold voltage shift and hysteresis 45 4.4 Summary 49 Chapter 5 Organic complementary inverter 50 5.1 N channel PTCDI-C13 organic thin film transistor 50 5.2 Experimental procedure and characteristics 57 5.3 Balanced performances of PTCDI-C13 and Pentacene TFTs. 58 5.4 Characteristics of organic complementary inverter 60 5.5 Summary 64 Chapter 6 Conclusions and recommendations 65 6.1 Conclusions 65 6.2 Recommendations for future work 67 6.3 Publication list 68 References 70en_US
dc.language.isoen_USzh_TW
dc.publisher電機工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1508201110170200en_US
dc.subjectrandom copolymeren_US
dc.subject隨機共聚物zh_TW
dc.subjectorganic thin film transistoren_US
dc.subjectinverteren_US
dc.subject有機薄膜電晶體zh_TW
dc.subject反相器zh_TW
dc.title低電壓有機薄膜電晶體與互補式反相器之研究zh_TW
dc.titleLow voltage organic thin film transistors and complementary inverteren_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:電機工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.