Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65862
標題: 應用cDNA-AFLP方法探討樟樹苗木在不同光量下基因的表現與苗木形態及生理作用的關係
Using cDNA-AFLP to Understand the Relationship among External, Physiological, and Gene Expressions of Camphor Tree Seedlings under Different Light Intensities
作者: 黃盈屏
Huang, Ying-Ping
關鍵字: cDNA-AFLP
樟樹
camphor tree
light intensity
gene expression
光量
基因表現
出版社: 森林學系所
引用: 沈介文(2000)五種台灣原生闊葉樹種於不同光度下之生態生理特性。國立台灣大學森林學研究所碩士論文。 李金梅(2002)三種台灣原生闊葉樹種苗木在不同光環境中之生長暨葉片形態變化。國立台灣大學森林學研究所碩士論文。 林添富(1992)光度對台灣櫸與毛柿苗木生長之影響。國立中興大學森林學研究所碩士論文。 周沛郁(2004)三種台灣原生闊葉樹苗木於不同光環境馴化下之生長暨光合作用反應。國立台灣大學森林學研究所碩士論文。 張安邦(1999)光度對大葉楠與香楠苗木生態生理反應之研究。國立中興大學森林學研究所碩士論文。 黃進輝(1994)烏心石苗木在不同光度下形態暨生理的反應。國立台灣大學森林學研究所碩士論文。 鄭舜方(2004)利用cDNA-Amplified Fragment Length Polymorphism分析竹嵌紋病毒感染期間菸草基因表現的差異性。國立中興大學生物科技學研究所碩士論文。 王相華(1995)不同光度對四種季風雨林樹種幼苗生長及形態之影響。林業試驗所研究報告季刊 10(4): 405-418。 郭耀綸、陳佐治、鄭鈞謄(2004)牛樟扦插苗的生長及光合作用對光量的反應。台灣林業科學 19(3): 215-224。 郭耀綸、陳暄培(2005)南仁山森林四種台灣特稀有樹種之光合作用光反應及溫度反應。台灣林業科學20(3):215-226。 廖天賜、張安邦、翁仁憲(2002)遮陰對大葉楠與香楠苗木光合作用及生理之影響。林業研究季刊 24(1): 1-10。 Ackerly D.(1997)Allocation, Leaf Display, and Growth in Fluctuating Light Environment. Plant resource allocation. Academic Press. p 231- 264. Ballare C. L.(1999)Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Elsevier Science 4(3): 97-102. Becker W. M., L. J. Kleinsmith and J. Hardin(2003)The World of the Cell. Benjamin Cummings 5th ed. p 462-470. Bernhardt R.(2006)Cytochromes P450 as versatile biocatalysts. J. Biotechnology 124:128-145. Callis J.(1995)Regulation of Protein Degradation. The Plant Cell 7:845-857. Campalans A., Montserrat P. and Ramon M.(2001)Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiology 21: 633–643. Chazdon R. L., K. Williams and C. B. Field(1988)Interaction between crown structure and light environment in five rainforest Piper species. Am J Bot 75: 1459-1471. Dubos C., G. L. Provost, D. Pot, F. Salin, C. Lalane, D. Madur, J. M. Frigerio and C. Plomion(2003) Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings. Tree Physiology 23:169–179. Durrant W. E., O. Rowland, P. Piedras, K. E. Hammond-Kosack and J. D. G. Jones(2000)cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles. The Plant Cell 12: 963–977. Foryer C. H. F., M. Lelandais and K. J. Kunert(1994)Photooxidative stress in plants. Physiol Plant. 92:696-717. Haese D. D., K. Vandermeiren, R. J. Caubergs, Y. G., L. D. Temmerman and N. Horemans(2004)Non-photochemical quenching kinetics during the dark to light transition in relation to the formation of antheraxanthin and zeaxanthin. Journal of Theoretical Biology 227: 175-186. Inoue K.(2004)Carotenoid hydroxylation – P450 finally. Trends in Plant Science 9: 515-517. Larcher W.(2003)Physiological plant ecology-ecophysiology and stress physiology of functional groups. Springer 4th ed p.32-52. Liu J. J. J., D. C. Krenz, A. F. Galvez and B. O. Lumen(1998)Galactinol synthase(GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Science 134: 11-20. Martinez G., J. F., Huq E. and, P. H. Quail(2000)Direct targeting of light signals to a promoter element-bound transcription factor. Science 288: 859–863. Mao C., K. Yi, L. Yang, B. Zheng, Y. Wu, F. Liu and P. Wu(2004)Identifcation of aluminium-regulated genes by cDNA- AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. Journal of Experimental Botany 55(394): 137-143. Ni M., J. M. Tepperman, and P. H. Quail (1998)PIF3, a phytochrome-interacting actor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95: 657-667. Poorter L.(1999)Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology 13: 396-410. Quiles M. J.(2005)Regulation of the expression of chloroplast ndh genes by light intensity applied during oat plant growth. Plant Science 168: 1567-1569. Reed, J. W., A. Nagtani, T. D. Elich, M. Fagan, and J. Chory(1994)Phytochrome A and phytochrome B have overlapping but distinct function in Arabidopsis development. Plant Physiol. 104: 1139-1149. Siberil Y., M. Thiersault, G. Nepumoceno, P. Doireau and P. Gantet(2002)J. Experimental Botany 53: 149-150. Senevirathna A. M. W. K., C. M. Stirling and V. H. L. Rodrigo(2003)Growth, photosynthetic performance and shade adaptation of rubber (Hevea brasiliensis) grown in natural shade. Tree physiology 23: 705-712. Shanklin J., M. Jabben and R. D. Vieratra(1987)Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation. Proc. Natl. Acad. Sci. USA 84: 359-363. Shinomura T, K Uchida, and M Furuya(2000)Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiol. 122: 147–156. Smith H.(2000)Phytochromes and light signal perception by plants-an emerging synthesis. Nature 407: 585-591. Smith P. T., T. M. Kuo and C. G. Crawford(1991)Purification and Characterization of Galactinol Synthase from Mature Zucchini Squash Leaves. Plant Physiol. 96: 693-698. Suorsa M., S. Sirpio, Y. Allahverdiyeva, V. Paakkarinen, F. Mamedov, S. Styring and E. M. Aro(2006)PsbR, a Missing Link in the Assembly of the Oxygen-evolving Complex of Plant Photosystem II. J. Biological Chemistry 281: 145–150. Taji T., C. Ohsumi, S. Iuchi, M. Seki, M. Kasuga, M. Kobayashi, K. Y. Shinozaki and K. Shinozaki(2002)Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. plant J. 29:417-426. Tanaka A., H. Ito, R. Tanaka, N. K. Tanaka, K. Yoshida and K. Okada(1998)Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. PNAS 95: 12719-12723. Valio I. F. M.(2001)Effects of shading and removal of plant parts on growth of Trema micrantha seedlings. Tree Physiology 21: 65-70. Vandenbussche F., W. H. Vriezen, J. S., L. J.J. Laarhoven, F. J.M. Harren and D. V. D. Straeten(2003)Ethylene and Auxin control the Arabidopsis response to decreased light intensity. Plant Physiology 133: 517-527. William R. B. and J. E. Garbarino(1996)The role of ubiquitin in plantsenescence and stress responses. Trends in plant Science 1: 331-335. Yang C. M., K. W. Chang, M. H. Yin and H. M. Huang(1998)Method for the determination of the chlorophylls and their derivatives. Taiwania 43(2):116-122. Zhao T. Y., R. B. Meeley and B. Downie(2003)Aberrant processing of a Maize GALACTINOL SYNTHASE transcript is caused by heat stress. Plant Science 165: 245-256.
摘要: 本試驗所選用的試驗材料為樟樹(Cinnamomon camphora),為台灣原生樹種,在台灣中低海拔地區為一優勢樹種,探討在不同光量下(全光的2%、25%及100%)生理性狀及形質生長,並了解苗木在不同光量下基因表現的差異情形。結果顯示,在相對光量25%下,無論是光合作用或生長表現均最佳,光補償點則隨相對光量的增加而增加。在基因的表現方面,利用互補DNA擴增片段長度多型性(cDNA-AFLP;complementary DNA Amplified Fragment Length Polymorphism)的技術來比較在不同光量下葉片基因表現是否有差異,結果顯示,在眾多差異表現的基因中,有25個基因片段經過解序,其核酸序列與Genebank的資訊比對後,得到9個可能與光有關的功能基因, 將其功能性歸納為以下幾類,(一)光反應中心複合體結構:(1)PSII reaction center protein 6.1KDa、(2)PS II reaction center protein 10KDa(PsbR)、(3)psbI genes;(二)光合作用:(1)transketolase、(2)galactinol synthase、(3)rubisco、(4)polysaccharide biosynthesis precursor;(三)參與蛋白質水解的酵素:ubiquitin-conjugating enzyme;(四)調節作用:cytochrome P450 like-TBP。惟其表現差異性在植物生長發育上有何機制,尚待後續的研究。
We perform the experiment with camphor tree (Cinnamomon camphora) to understand the overall expressions of the seedlings treated with different light intensities (2%, 25%, and 100% of full light). The results including the external and physiological expressions show that the growth and photosynthesis of the seedlings under the condition of 25% full light are the best. And we use the cDNA-AFLP technology to compare the variation of gene expression between treatments. About 25 obvious fragments of differential expressed gene using 5 primer pairs are eluted from gel, cloned, and sequenced. These sequences are compared and aligned with those sequences deposited in the database of Genebank and could matched to 9 interesting functions. These functions can also be grouped into 4 groups: (I) structure of light harvesting complex related: PSII reaction center protein6.1KDa, PS II reaction center protein 10 kDa (PsbR), transfer RNA-Asp, transfer RNA-Tyr, transfer RNA-Glu, transfer RNA-Ser, and PSII protein (psbI) genes; (II) carbxylation related: transketolase, galactinol synthase, rubisco, and polysaccharide biosynthesis precursor; (III) proteolysis related: ubiquitin-conjugating enzyme; and (IV) regulators: cytochrome P450 like-TBP. However, how do these differential expressed genes involve in the effects on the growth and development of plants is still needed to be further studied.
URI: http://hdl.handle.net/11455/65862
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200612180800
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.