Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65927
標題: 木賊葉木麻黃水分及需光性之研究
Studies on Water and Light-demanding of Casuarina equisetifolia
作者: 王經文
Wang, Ging-Wun
關鍵字: Casuarina equisetifolia
木賊葉木麻黃
spectral reflectance
Chlorophyll fluorescence
photosynthetic
spectral water potential
葉片反射光譜
葉綠素螢光
光合作用
葉片水勢
出版社: 森林學系所
引用: 引用文獻 丁慧娟、郭幸榮、李遠欽(1987)木麻黃固氮效率之研究(II)影響根瘤形成及固氮效率之因子。中華林學季刊20(1):29-52。 方榮坤、廖天賜、沈慈安(1987)不同光度對於樟樹、楓香及桃花心木苗生長之影響。國立中興大學森林系研究報告208號。 王智弘(1997)光度對春不老與潺槁木薑子苗木生長及生理反應之影響。國立中興大學森林學研究所碩士論文。 王志斌(2006)四湖海岸木麻黃林下光度對水黃皮、海檬果及欖仁苗木生長。國立嘉義大學農學院林業暨自然資源研究所碩士論文。 甘偉航(1964)台灣省木麻黃之種類及適應性調查。林業試驗所報告第99號。 朱德民(1984)植物與環境逆境。明文書局股份有限公司。 朱木生 (1995) 台東木麻黃海岸林現況—木麻黃之天然更新介紹。台灣林業 21(7):36-41。 李遠欽(1984)桃園海岸林被害原因探討及應加強之措施。台灣林業10(1):4-7。 林信輝(1987)三種防風林植物在海岸環境下之生理生態反應。國立中興大學植物研究所博士論文。 林信輝、陳明義、陳清義、李遠欽(1988)木麻黃防風林群落對海岸沙丘環境應力之反應。中華林學季刊21(3):3-16。 林昭遠、謝顯宗、陳明義(1996)木麻黃防風林斥水層復育之研究。中華水土保持學報 27(2):107-117。 徐邦達(2002)葉綠素螢光和PAM螢光儀:原理及測量。光合作用研討會。p. 1-9。 徐鎮暉(2002)台灣二葉松與台灣雲杉光合作用及相關生理特性之季節變化。國立中興大學植物學研究所碩士論文。 高世昌(2006)不同光照下彩葉草的葉綠素螢光及光譜反射特性。國立中興大學森林學研究所碩士論文。 陳國煌(1980)台灣東北岸地帶海風鹽分對防風林生長的影響。台大森林研究所碩士論文。 陳明男、廖天賜(2006)光度及溫度對四種紅樹林苗木光合作用之影響。林業研究季刊 28(2): 1-14。 陳耀南(2004)不同生態習性植物之葉綠素螢光及葉片反射光譜特性。國立中興大學生命科學研究所碩士論文。 陳宜敏(2005)大葉桃花心木與小葉桃花心木苗木生態生理之研究。國立中興大學森林學研究所碩士論文。 盛志澄、康瀚(1961)台灣之防風林。中國農村復興聯合委員會特刊 第32號。 郭耀綸 (1992) 相思樹苗木生理及生長對水分逆境之反應。中華林學會季刊 25(1):33-44。 郭耀綸、楊月玲、吳祥鳴(1999)墾丁熱帶森林六種樹苗生長性狀及光合作用對光量的可塑性。台灣林業科學 14(3):255-273。 郭耀綸、江璧合(2003)台灣特有種台灣假黃楊、小芽新木薑子及台灣梭羅木的生長光合作用對光量的反應。台灣林業科學 18(1):55-66。 郭耀綸、范開翔(2003)南仁山森林倒木孔隙三年間的更新動態。台灣林業科學 18(2):143-151。 郭耀綸、范開翔、黃慈薇、李彥屏、吳惠綸、蔡瑞芬(2004)台灣三十種闊葉樹陽葉氣體交換潛力之研究。台灣林業科學 19(4):375-386。 郭耀綸、陳瑄培(2005)南仁山森林四種台灣特稀有樹種之光合作用光反應及溫度反應。台灣林業科學 20(3):215-226。 黃進輝(1994)烏心石苗木在不同光度下形態暨生理反應。國立台灣大學森林學研究所碩士論文。 楊玫玲(2000)三斗石櫟苗木對不同光度及磷肥之形態暨生理反應。國立台灣大學森林學研究所碩士論文。 廖天賜、方榮坤、郭志誠(1993)水分對楓香及烏心石苗木生長之影響。國立中興大學實驗林研究報告 15(2):103-112。 廖玉琬、徐善德 (2002) 植物生理學。啟英文化事業有限公司。 劉如章(2003)以遙測方法監測植物生理之探討。國立中興大學森林學研究所碩士論文。 賴美鳳(2004)光度與溫度對葉綠素螢光特性之影響。國立中興大學生命科學研究所碩士論文。 賴冠名(2006)台灣二葉松及芒草在不同海拔及季節之光能利用。國立中興大學生命科學研究所碩士論文。 劉賢祥(1999)植物生理學。徐氏文教基金會出版。p.145-155。 羅紹麟(2003)海岸防風林之效益。台灣海岸防風林經營方針座談會。 鐘基啟(2001)不同條件下植物葉片光譜反射及葉綠素螢光特性之研究。國立中興大學植物學研究所碩士論文。 Aron, D.( 1949) Copper enzyme in isolated chloroplasts polyphenoloxidased in Beta vulgaris. Plant Physiol. 24: 1-15. Adams III, W. W., C. R. Zarter, V. Ebbert and B. Demmig-Adams(2004)photoprotective strategies of overwintering evergreens. BioScience 54(1): 14-49. Ain-Lhout, F., M. Z., M. C. D. B, R. T, A. Clavijo and F. G. Novo(2001) Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant and Soil 203: 175-183. Bergmeyer, H. U. (1983) Methods for protein determination in methods of enzymatic analysis 3rd edtion vol II-Samples reagents assessment of results. Verlag Chemie Weinheim. p. 84-94. Baquedano, F. J. and F. J. Castillo (2006) Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus Coccifera and Quercus ilex. Trees 20: 689-700. Cechin, I., S. C. R, V. C. Oliveira and T. F. Fumis (2006) Photosynthetic responses and praline content of mature and young leaves of sunflower plants under water deficit. Photosynthetica 44 (1) : 143-146. Colom, M. R. and C. Vazzana (2003) Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environmental and Experimental Botany 49: 135-144. Demmig-Adams, B., W. W. Adams III, D. H. Barker, B. A. Logan, D. R. Bowling and A. S. Verhoeven (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum 98: 253-264. Eastman, P. A. K. and E. CAmm(1995)Regulation of photosynthesis in interior spruce during water stress: changes in gas exchange and chlorophtll fluorescence. Tree Physiology 15: 229-235. Gamon, J. A., L. Serrano and J. S. Surfus (1997) The photochemical reflectance index:an optical indicator of photosynthetic radiation use across species, functional types, and nutrient levels. Oecologia 112: 492-501. Gonçalves, J. F. D. C., R. A. Marenco and G. Vieira (2001) Concentration of photosynthetic pigments and chlorophyll fluorescence of Mahogany and Tonka bean under two ligvht environments. R. Bras. Fisiol.Veg. 13 (2) : 149-157. Gulias, J., J. Flexas, A. Abadia and H. Medrano (2002) Photosynthetic responses to water deficit in six Mediterranean sclerophyll species:possible factors explaining the declining distribution of Rhamnus ludovvvici-salvatoris, an endemic Balearic species. Tree Physiology. 22: 687-697. Gutierrez, L., A. Casates, R. Sánchen-Tamés and J. Majada (2002) Early growth, biomass allocation and physiology in three Eucalyptus nitens populations under different water regimes. Forestry 75 (2): 139-148. Guo, J. and C. M. Trotter (2004) Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species. Functional Plant Biology 31: 255-265. Gómez-aparicio, L., F. Valladares and R. Zamora (2006) Different light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiology 26: 947-958. Hare, P. D. and W. A. Cress (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21: 79-102. Hanson, A. D. (1980) Interpreting the metabolic responses of plants to water stress. Hort. Sci. 15: 623-629. Kozlowski, T. T. and S. G. Pallardy (1997) Growth Control in Woody Plant. Academic Press, New York, pp. 641. Krause, G. H., O. Y. Koroleva, J. W. Dalling and K. Winter (2001) Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps. Plant, Cell and Envir. 24: 1345-1352. Kozlowski, T. T. (2002) Physiological ecology of natural regeneration of harvested and disturbed forest stands: implications for forest management. Forest Ecology and Management 158: 15-221. Leuzinger, S., G. Zotz, R. Asshoff and C. Körner (2005) Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology 25: 641-650. Ngugi, M. R., D. Doley, M. A. Hunt, P. Ryan and P.Dart (2004) Physiological responses to water stress in Eucalyptus cloeziana and E. argophloia seedlings. Trees Structure and Function. 18 (4) : 381-389. Pastenes, C., E. Santa-Maria, R. Infante and N. Franck (2003) Domestication of Chilean guava (Ugni molinae Turcz.) , a forest understore shrub, must consider light intensity. Scientia Horticulturae 98: 71-84. Rieger, M. (1995) Offsetting effects of reduced root hydraulic conductivity and osmotic adjustment following drought. Tree Physiology. 15: 379-385. Sánchez-gómez, D., F. valladares and M. A. Zavala (2006) Functional traits and plasticity in response to light in seedling of four Iberian forest tree sprcies. Tree physiology. 26: 1425-1433. Solar, L. I., S. Johnson and T. M. Dejong (2006) Relationship of water status to vegetative growth and leaf gas exchange of peach. Tree Physiology 26:1333-1341. Taiz, L. and E. Zeiger (2002) Plant Physiology. 3rd ed. Sinauer Associates, Sunderland. Warren, C. R., N. J. Livingston and D. H. Turpin (2004) Water stress decreases the transfer conductance of Douglas-fir(Pseudotsuga menziesii) seedlings. Tree Physiology 24: 971-979.
摘要: 【摘要】 木賊葉木麻黃現今多為台灣第一線海岸防風林的重要造林樹種,然而由於惡劣的環境以及在颱風不斷侵襲下,逐漸呈現衰退枯萎之現象,然木麻黃卻鮮有天然小苗下種更新,而海岸沙丘乾旱與高光環境為林木更新的主要障礙因子之一,故本研究以木麻黃對光度與水分之生態生理特性為主題,探討適合木麻黃小苗更新之環境因子。 試驗結果顯示,在全光下木麻黃生長最佳,具最大淨高生長量與淨地際生長量,分別可達20.7 cm month-1與3.1 mm month-1,光飽和光合速率與光補償點也最高,分別為23-25 µmol CO2 m-2 s-1與 81.32±7.22 µmol photo m-2 s-1,且在高光照射後有快速恢復的保護能力與消散過多能量之機制,亦能適時提高類胡蘿蔔/葉綠素a+b(car/chl a+b),增加過多能量的消耗,以避免發生光抑制現象,顯示木麻黃對高光的適應能力強。 木麻黃苗木在缺水處理中,能維持平緩的生長量,鮮重含水率與對照組相差無幾(皆約70%),且會隨著缺水愈嚴峻逐漸累積可溶性蛋白,在含水率30%之處理達0.42 mg g-1,推測可能用於增加滲透潛勢,以利水分之吸收,呈現對乾旱極具忍耐力。在斷水期間,缺水處理的苗木藉由控制氣孔來減少水分喪失,且能提高葉黃素循環,增加對過多能量的消散,其葉片反射光譜(PRI)最低降至-0.062,且長期的缺水處理對於木麻黃苗木耐旱有類似健化之效果。
Abstract Casuarina equisetifolia is the important windbreak species used to planting at the sharp end, it has shown declined because of the foul environment and typhoon stricken continuously. C. equisetifolia had natural regeneration hardly. In order to understanding the natural regeneration mechanism of C. equisetifolia, we set various light and water treatment and observed the responses on phenology and physiology. Results revealed that, C. equisetifolia had well performance in high irradiation and had maximum of net height growth(20.7 cm month-1), net diameter growth(3.1 mm month-1), light saturation point(23-25 µmol CO2 m-2 s-1) and light compensation point(81.32±7.22 µmol photo m-2 s-1). C. equisetifolia also shown the ability of fast recovery and mechanism of dissipation after irradiated by high irradiation, and it also enhanced the carotenoids/chlorophyll a+b to promote the dissipation, so it shown adaptation of high irradiation to keep off photoinhibition. C. equisetifolia shown the grreat tolerant during water stress. C. equisetifolia can keep mild growth and maintained the same water content(around 70%)with control in the drought treatment. C. equisetifolia accumulated soluble proteins during drought situation. C. equisetifolia had 0.42 mg g-1 of soluble proteins in water content 30% treatment, that will probably increase the osmoregulation to absorb water. Seedling in droughty treatment reduced water loss by closing stomata, and enhanced the ability of xanthophyllcycle (minimum PRI ≒ -0.062), and shown hardened effect by enhanced water stress.
URI: http://hdl.handle.net/11455/65927
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200710290600
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.