Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65978
標題: 不同光度環境對三種海岸林樹種苗木生理之反應
Physiological Responses of Three Coastal Tree Species Seedling on Different Light Environments
作者: 許立勳
Shiu, Li-Shiun
關鍵字: 海檬果
Cerbera manghas
恆春山枇杷
蘭嶼羅漢松
葉綠素螢光
反射光譜
葉黃素循環
光抑制
生理可塑性
Eriobotrya deflexa f. koshunensis
Podocarpus costalis
chlorophyll fluorescence
spectral reflectance
xanthophyll cycle
photoinhibition
physiological plasticity
出版社: 森林學系所
引用: 方榮坤、廖天賜、沈慈安 (1987) 林木耐陰性之研究(一):不同光度對於樟樹、楓香及桃花心木苗木生長之影響。國立中興大學森林系研究報告第208號。8頁。 王志斌 (2006) 四湖海岸木麻黃林下光度對水黃皮、海檬果及欖仁苗木生長之影響。國立嘉義大學農學院林業暨自然資源研究所碩士論文。99頁。 王經文 (2007) 木賊葉木麻黃水分及需光性之研究。國立中興大學森林學系碩士論文。58頁。 甘偉航、陳財輝 (1988) 台灣防風林之營造。現代育林 3(2):43-57。 石峰吉 (2004) 不同葉色芥藍菜的葉綠素螢光及葉片反射光譜特性。國立中興大學生命科學系碩士論文。104頁。 伍世平、王君健、于志熙 (1994) 11種地被植物的耐陰性研究。武漢植物學研究 12:360-364。 呂勝由、何坤益、洪昆源、蔡達全、簡慶德、樓梅芳、陳沁源、鍾慧元 (1988) 台灣地區濱海型工業區綠化實用圖鑑。林業試驗所叢刊第95號。251頁。 江忠穎 (2006) 不同葉色甘藷的葉綠素螢光及葉片反射光譜特性。國立中興大學生命科學系碩士論文。109頁。 李遠欽 (1983) 複層林之營造。台灣林業 9(7):12-20。 李金梅 (2002) 三種台灣原生闊葉樹種苗木在不同光環境中之生長暨葉片形態變化。國立台灣大學森林學研究所碩士論文。94頁。 李明仁 (2003) 海岸複層林之營造。海岸防風林營造研討會論文集。p. 1-10。 李威震、王兆桓 (2007) 東北部海岸保安林木麻黃林分調查分析。台灣林業 33(5):15-24。 林渭訪、薛承健、鄭宗元、王仁禮、章樂民 (1953) 台灣省沿海防風植物生態及適應性之調查報告。台灣省林業試驗所合作報告 第2號:64-65。 林信輝 (1987) 三種防風林植物在海岸環境之生理生態反應。國立中興大學植物學研究所博士論文。238頁。 林謙佑、郭幸榮 (2004) 神木溪天然闊葉林孔隙光度及土壤水分之動態變化與苗木之生長表現。中華林學會93年度學術論文發表會 p. 318。 林文智、郭耀綸 (2007) 山楜椒、光葉柃木及錐果櫟樹苗的生長與生理對不同光環境的反應。作物、環境與生物資訊 4(4):297-306。 翁仁憲、廖天賜 (1999) 高山植群之生態生理特性研究。行政院國家科學委員會專題研究計劃成果報告。13頁。 徐邦達 (2002) 葉綠素螢光和PAM螢光儀:原理及測量。光合作用研討會。p. 1-9。 徐鎮暉、廖天賜、翁仁憲 (2005) 不同海拔台灣二葉松光合作用、同化產物累積、形成層活動之季節變化及針葉生長期之差異。中華林學季刊 38(3):291-303。 張安邦、廖天賜、方榮坤、翁仁憲、李丁松 (2000) 光度對大葉楠及香楠形質生長的影響。林業研究季刊22(1):11-22。 范貴珠、許博行、張峻德 (2002) 土壤鹽度對欖李苗木葉綠素螢光反應及呼吸作用之影響。台灣林業科學 17(3):323-335。 許明晃、楊志維、張新軒、楊棋明、黃文達 (2006) 空氣污染物對甘蔗葉片色素與反射光譜特徵之影響。作物、環境與生物資訊 3(4):345-354。 許博行 (2006) 海岸木麻黃林分易衰老原因之探討。台灣林業 32(2):40-44。 黃盟元 (2003) 不同生態區和季節之植物葉片反射比光譜及其相關生理特性研究。國立中興大學生命科學系碩士論文。63頁。 黃秀鳳、黃文達、許明晃、楊志維、趙碧玉、張新軒、蔡養正、楊棋明 (2004) 三種不同顏色甘薯葉片葉綠素合成能力之分析。作物、環境與生物資訊 1(1):47-54。 莊禮豪 (2006) 不同光度和溫度下植物之葉綠素螢光特性。國立中興大學生命科學系碩士論文。87頁。 楊凱愉 (2007) 施肥對三種桉樹苗木水分健化期間之生理反應。國立中興大學森林學系碩士論文。74頁。 趙惠德 (2000) 不同光度及施肥量對烏心石苗木形態及生理之影響。國立台灣大學森林學研究所。55頁。 廖天賜、翁仁憲 (2000) 台灣常見數種作物、野草及林木之光合作用特性。林業研究季刊 22(3):15-26。 廖天賜、張安邦、翁仁憲 (2002) 遮陰對大葉楠與香楠苗木光合作用及生理之影響。林業研究季刊 24(1):1-10。 劉正平、陳朝圳、范貴珠 (1991) 海岸樹種需光量之研究。屏東農專學報 32:103-108。 劉正平、葉慶龍、范貴珠 (1994) 澎湖複層海岸防風林之建造試驗。台灣林業 20(12):6-12。 劉業經、呂福原、歐辰雄 (1994) 台灣樹木誌。國立中興大學農學院叢書。809頁。 郭耀綸 (1993) 六種固有景觀樹種之耐陰性研究。第八屆全國技術及職業教育研討會-農業類。p. 1-10。 郭耀綸、吳祥鳴 (1997) 黃心柿、毛柿及大葉山欖苗木光合作用與形態對不同光量的可塑性。中華林學季刊 30(2):165-185。 郭耀綸、楊月玲、吳祥鳴 (1999) 墾丁熱帶森林六種樹苗生長性狀及光合作用對光量之可塑性。台灣林業科學 14(3):255-273。 郭耀綸、范開翔、黃慈薇、李彥屏、吳惠綸、蔡瑞芬 (2004) 台灣三十種闊葉樹陽葉氣體交換潛力之研究。台灣林業科學 19(4):375-386。 劉如章 (2003) 以遙測方法監測植物生理之探討。國立中興大學森林學系碩士論文。82頁。 陳舜英 (1997) 光度及氮肥對三斗石櫟苗木形質生長暨林地表現之影響。國立台灣大學森林學研究所碩士論文。86頁。 陳明義 (1995) 台灣海岸林生態學之經營。林業試驗所百週年慶學術研討會論文集。p. 221-226。 陳榮坤、楊純明 (2003) 水稻植被反射光譜之特徵及變異。中華農業氣象 10:29-38。 陳耀南 (2004) 不同生態習性植物之葉綠素螢光及葉片反射光譜之特性。國立中興大學生命科學系碩士論文。116頁。 陳宜敏 (2005) 大葉桃花心木與小葉桃花心木苗木生態生理之研究國立中興大學森林學系碩士論文。64頁。 陳明男、廖天賜 (2006) 光度與溫度對四種紅樹林苗木光合作用之影響。林業研究季刊 28(2):1-14。 陳忠義、廖天賜 (2007) 構樹苗木對光度之生理反應。林業研究季刊 29(3):15-26。 鄧書麟、何坤益、陳財輝、王志斌、高銘發 (2005) 台灣西海岸防風林造林策略與樹種之選介。台灣林業 31(1):62-67。 鄧書麟、沈勇強 (2006) 台灣海岸林經營面臨之困境與對策探討。台灣林業 32(4):3-8。 鐘基啟 (2001) 不同環境條件下植物葉片光譜反射及葉綠素螢光特性之研究。國立中興大學生命科學系碩士論文。90頁。 蘇雪痕 (1994) 植物造景。中國林業出版社。p. 35-39。 Aranda, I., L. Gil and J. A. Pardos (2004) Improvement of growth conditions and gas exchange of Fagus sylvatica L. seedlings planted below a recently thinned Pinus sylvestris L. stand. Trees 18: 211-220. Arnon (1949) Copper enzyme in isolated chloroplasts polyphenoloxidased in Beta vulgaris. Plant Physiology 24: 1-15. Bailey, S., P. Horton, and R. G. Walters (2004) Acclimation of Arabidopsis thaliana to light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218: 793-802. Balaguer, L., E. Martínez-Ferri, F. Valladares, M. E. Pérez-Corona, F. J. Baquedano, F. J. Castillo and E. Manrique (2001) Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Functional Ecology 15: 124–135. Baquedano, F. J. and F. J. Castillo (2006) Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees 20: 689-700. Bazzaz, F. A. and R. W. Carlson (1982) Photosynthetic acclimation to variability in the light environment of early and late successional plant. Oecologia 54: 313-316. Beer, A., K. Gundermann, J. Beckmann and C. Büchel (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: Evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45: 13046-13053. Belward, A. S. (1991) Spectral characteristics of vegetation, soil and water in the visible, near-infrared and middle-infrared wavelengths. In: Belward, A. S., and C. R. Valenzuela (1991) Remote Sensing and Geographical Information Systems for Resource Management in Developing Countries. Kluwer, Netherlands. 506 pp. Bencke, Y. (1981) Environmental control of CO2 assimilation and leaf conductance in Larix decidaa Mill. I. A comparison of contrasting natural environment. Oecologia 50: 54-61. Bergmeyer, H. U. (1983) Methods for protein determination in methods of enzymatic analysis. 3rd. edtion vol. Ⅱ─Samples reagents assessment of results. Verlag Chemie Weinheim. p. 84-94. Björkman, O. and B. D. Adams (1995) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of high plants. In: Ecophysiology of Photosynthesis. (Eds): Schulze, E. D. and M. M. Caldwell, Springer. Germany. p. 17-47. Boardman, N. K. (1977) Comparative photosynthesis of sun and shade plant. Ann. Rev. Plant Physiology 28: 358-377. Bolhàr-Nordenkampf, H. R. and G. Öquist (1993) Chlorophyll fluorescence as a tool in photosynthesis research. In: Hall, D. O., M. O. J. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, S. P. Long (1993), editors. Photosynthesis and production a changing environment: a field and laboratory manual. New York: Chapman and Hall. p. 193-206. Bornman, J. F., T. C. Vogelmann and G. Martin (1991) Measurement of chlorophyll within leaves with a fibreoptic microbe. Plant, Cell and Environment 14: 729-725. Brodribb, T. J. and R. S. Hill (1997) Light response characteristics of a morphologically diverse group of southern hemisphere conifers as measured by chlorophyll fluorescence. Oecologia 110: 10-17. Brodribb, T. J., T. S. Feild and G. J. Jordan (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144: 1890-1898. Brzeziecki, B. and F. Kienast (1994) Classifying the life-history strategies of trees on the basis of the Grimian model. Forest Ecology and Management 69:167–187. Chazdon, R. L., K. Williams and C. B. Field (1988) Interactions between crown structure and light environment in five rainforest Piper species. American Journal of Botany 75: 1459-1471. Chen, P. and K. Klinka (1998) Survival, growth, and allometry of planted Larix occidentalis seedlings in relation to light availability. Forest Ecology and Management 106: 169-179. Cheng, L., L. H. Fuchigami and P. J. Breen (2000) Light absorption and partitioning in relation to nitrogen content in ‘Fuji’ apple leaves. Journal of the American Society for Horticultural Science 125: 581-587. Colom, M. R. and C. Vazzana (2003) Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environment and Experimental Botany 49: 135-144. Demming-Adams, B. and W. W. Adams (1992) Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology Plant Molecular Biology 43: 599-626. Demming-Adams, B. and W. W. Adams (1996) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198: 113-125. Demming-Adams, B., W. W. Adams Ⅲ, D. H. Barker, B. A. Logan, D. R. Bowling and A. S. Verhoeven (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum 98: 253-264. Denslow, J. S., J. C. Schultz, P. M. Vitousek and B. R. Strain (1990) Growth responses of tropical shrubs to treefall gap environments. Ecology 71: 165-179. Eastman, P. A. K. and E. Camm (1995) Regulation of photosynthesis in interior spruce during water stress: changes in gas exchange and chlorophyll fluorescence. Tree Physiology 15: 229-235. Evain, S., J. Flexas and I. Moya (2004) A new instrument for passive remote sensing: 2. Measurement of leaf and canopy reflectance changes at 531nm and their relationship with photosynthesis and chlorophyll fluorescence. Remote Sensing of Environment 91: 175-185. Fetene, M. and and Y. Feleke (2001) Growth and photosynthesis of seedlings of four tree species from a dry tropical afromontane forest. Journal of Tropical Ecology 17: 269-283. Finazzi, G., G. N. Johnson, L. Dall’Osto, P. Joliot, F. A. Wollman and R. Bassi (2004) A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Proceedings of the National Academy of Sciences of USA 101: 12375-12380. Gamon, J. A., C. B. Field, W. Bilger, O. Björkman, A. L. Fredeen and J. Penuelas (1990) Remote sensing of the xanthophylls cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85: 1-7. Gamon, J. A., J. Penuelas and C. B. Field (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment 41: 35-44. Gamon, J. A., C. B. Field, A. L. Fredeen and S. Thayer (2001) Assessing photosynthetic downregulation in sunflower in stands with an optically-based model. Photosynthesis Research 67: 113-125. Gianfranco, M. and S. Pinzauti (1996) Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings. Forest Ecology and Management 86: 61-71. Givnish, T. J. (1988) Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology 15: 63-92. Gonçalves, J. F. D. C., R. A. Marenco and G. Vieira (2001) Concentration of photosynthetic pigments and chlorophyll fluorescence of Mahogany and Tonka bean under two light environments. Revista Brasileira de Physiologia Vegetal 13(2): 149-157. Guo, J. and C. M. Trotter (2004) Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species. Functional Plant Biology 31: 255-265. Handry, G. A. F., J. D. Houghton and S. B. Brown (1987) The degradation of chlorophyll—a biological enigma. New Phytologist 107: 255-302. Henry, H. A. L. and S. C. Thomas (2002) Interactive effects of lateral shade and wind on stem allometry, biomass allocation and mechanical stability in Abutilon theophrasti (Malvaceae). American Journal of Botany 89: 1609-1615. Hetherington S. E., J. He and R. M. Smillie (1989) Photoinhibition at low temperature in chilling-sensitive and -resistant plants. Plant Physiology 90: 1609-1615. Hieke, S., C. M. Menzel and P. Lüdders (2002) Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis). Tree Physiology 22: 1249-1256. Horton, P. and A. V. Ruban (2005) Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. Journal of Experimental Botany 56: 365-373. Kamaluddin, M. and J. Grace (1993) Growth and photosynthesis of tropical forest tree seedlings(Bischofia javanica Blume) as influenced by a change in light availability. Tree Physiology 13: 189-201. Kalituho, L., K. C. Beran and P. Jahns (2005) The transiently generated non-photochemical quenching of excitation energy in Arabidopsis leaves is modulated by zeaxanthin. Plant Physiology 143: 1861-1870. Kitajima, K. (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98: 419-428. Kitajima, K. and K. P. Hogan (2003) Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant Cell and Environment 26: 857-865. Kitao, M., T. T. Lei, T. Koike, H. Tobita and Y. Maruyama (2000) Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant Cell and Environment 23: 81-89. Kozlowski, T. T., P. J. Kramer and S. G. Pallardy (1991) The Physiological Ecology of Woody Plants. Academic Press. Inc. 657 pp. Krause, G. H., O. Y. Koroleva, J. W. Dalling and K. Winter (2001) Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps. Plant Cell and Environment 24: 1345-1352. Kursar, T. A. and P. D. Coley (1999) Contrasting modes of light acclimation in two species of the rainforest understory. Oecologia 121: 489-498. Lambers, H. and H. Poorter (1992) Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advance in Ecological Research 23: 187-261. Lamber, H., F. S. Chapin Ⅲ and T. L. Pons (1998) Plant Physiology. New York: Springer-Verlag. 504 pp. Larcher, W. (1995) Physiology Plant Ecology. 3rd edition. Berlin: Springer. 506 pp. Lawton, R. O. (1990) Canopy gaps and light penetration into a wind-exposed tropical lower mountain rain forest. Canadian Journal of Forest Research 20: 659-667. Lavaud, J. and P. Kroth (2006) In diatoms, the transthylakoid proton gradient regulates the photoprotective non-photochemical fluorescence quenching beyond its control on the xanthophyll cycle. Plant Cell Physiology 47:1010-1016. Lee, D. W. (1989) Canopy dynamics and light climates in a tropical moist deciduous forest in India. Journal of Tropical Ecology 5: 65-79. Lichtenthaler, H. K. (1996) Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology 148: 4-14. Lu, C. and J. Zhang (2000) Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Science 151: 135-143. Lu, C., N. Qiu, Q. Lu, B. Wang and T. Kuang (2003) PSII photochemistry, thermal energy dissipation, and the xanthophyll cycle in Kalanchoë daigremontiana exposed to a combination of water stress and high light. Physiologia Plantarum 118(2): 173-182. Martínez-Carrasco, R., J. Sánchez-Rodriguez and P. Pérez (2002) Changes in chlorophyll fluorescence during the course of photoperiod and in response to drought in Casuarina equisetifolia Forst. and Forst. Photosynthetica 40(3): 363-368. Matile, P., T. Duggelin and C. Peisker (1992) Production and release of a chlorophyll catabolite in isolated senescent chloroplasts. Planta 187: 230-235. Maxwell, K. and G. M. Johnson (2000) Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51: 659-668. Méthy, M. (2000) Analysis of photosynthetic activity at the leaf and canopy levels from reflectance measurements: a case study. Photosynthetica 38(4): 505-512. Mulkey, S. S., A. P. Smith and S. J. Wright (1991) Comparative life history and physiology of two understory Neotropical herbs. Oecologia 88: 263-273. Müller, P., X. P. Li and K. K. Niyogi (2001) Non-photochemical quenching. A. response to excess light energy. Plant Physiology 125: 1558-1566. Niyogi, K. K., C. Shih, W. S. Chow, B. J. Pogson, D. D. Penna and O. Björkman (2001) Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynthesis Research 67: 139-145. Nichol, C. J., U. Rascher, S. Matsubara and B. Osmond (2006) Assessing photosynthetic efficiency in an experimental mangrove canopy using remote sensing and chlorophyll fluorescence. Trees 20: 9-15. Oxborough, K. and N. R. Baker (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv''/Fm'' without measuring F0''. Photosynthesis Research 54: 135-142. Pandey S., S. Kumry and P. K. Nagar (2003) Photosynthetic performance of Ginkgo biloba L. grow under high and low irradiance. Photosynthetica 41(4): 505-511. Poorter, L. (1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology 13: 396-410. Rascher, U., M. Liebieg and U. Lüttge (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell and Environment. 23: 1397-1405. Richardson, A. D. and G. P. Berlyn (2002) Spectral reflectance and photosynthetic properties of Betula papyrifera (Btulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. American Journal of Botany 89: 88-94. Robakowski, P (2005) Susceptibility to low-temperature photoinhibition in three conifers differing in successional status. Tree Physiology 25: 1151-1160. Schreiber, U., W. Bilger, H. Hormann and C. Neubauer (1998) Cholorophyll fluorescence as a diagnostic tool: basics and some aspects of practical relevance. In: Raghavendra, A. S., editor. Photosynthesis: a comprehensive treatise. Cambridge: Cambridge Univ. Press. p.320-336. Smith, H. (1982) Light quality, photoperception, and plant strategy. Ann. Rev. Plant Physiology 33: 481-518. Solhaug, K. A. and J. Haugen (1998) Seasonal variation of photoinhibition of photosynthesis in bark from Populus tremula L. Photosynthetica 35: 411-417. Strauss-Debenedetii, S. and F. A. Bazzaz (1991) Plasticity and acclimation to light in tropical Moraceae of different sucessional positions. Oecologia 87: 377-387. Taiz, L. and E. Zeiger (2002) Plant Physiology. 3rd ed. Sinauer Associates.Inc. 690 pp. Valladares, F. and R. W. Pearcy (1998) The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem, a California chaparral shrub. Oecologia 114:1-10. Valladares, F., J. M. Chico, I. Aranda, L. Balaguer, P. Dizengremel, E. Manrique and E. Dreyer (2002) The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16: 395-403. Van Hees, A. F. M. (1997) Growth and morphology of pedunculate oak (Quercus robur L.) and beech (Fagus sylvatica L.) seedlings in relation to shading and drought. Annals of Forest Science 54:9-18. Whatley, J. M. and F. R. Whatley (1980) Light and Plant Life. Edward Arnold. Ltd. London. 91 pp. Whitmore, T. C. (1990) An Introduction to Tropical Rain Forest. Oxford University Press, Oxford. 266 pp. Wolf F. T. (1956) Changes in chlorophyll a and b in antumn leaves. American Journal of Botany 43: 714-718. Xu, S. M., L. X. Liu, K. C. Woo and D. L. Wang (2007) Changes in photosynthesis, xanthophyll cycle, and sugar accumulation in two North Australia tropical species differing in leaf angles. Photosynthetica 45(3): 348-354. Yin, C. Y., F. Berninger and C. Y. Li (2006) Photosynthetic responses of Populus przewalski subjected to drought stress. Photosynthetica 44(1): 62-68. Zhang, S., K. Ma and L. Chen (2003) Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. Environment and Experimental Botany 49: 121-133. Zotz, G. and K. Winter (1996) Diel pattern of CO2 exchange in rainforest canopy plants. In: Mulkey S. S., R. L. Chazdon, and A. P. Smith, editor (1996). Tropical Forest Plant Ecophysiology. New York: Chapman & Hall. p. 89-113.
摘要: 為改善木麻黃純林之林分結構,許多學者提出複層林之營造,以達到海岸林穩定林相之目的。本研究以人為不同遮陰之處理,探討海檬果(Cerbera manghas)、恆春山枇杷(Eriobotrya deflexa f. koshunensis)和蘭嶼羅漢松(Podocarpus costalis)等三種不同生態習性之海岸樹種對不同光度之生理反應,提供海岸複層林營造時,依不同孔隙選擇樹種之參考。 研究結果顯示海檬果於各光度處理均有較大的苗高及地徑淨生長量,別達到29 cm及6 mm;而蘭嶼羅漢松則呈現較低的生長量。在植株單一葉片形態變化上,恆春山枇杷表現出最高的形態可塑性。光合特性顯示三樹種以全光處理者之光飽和點都介在700〜900 μmol photon m-2 s-1之間,而海檬果及恆春山枇杷全光處理者也表現出較大之最大光合作用速率,分別為10.26及10.78 μmol CO2 m-2 s-1。葉綠素螢光日變化顯示三樹種全光處理者皆明顯受到光抑制,其正午之Fv/Fm值皆下降至0.75以下,而ΦPSⅡ值則下降至0.70以下。以95 %遮光處理之三樹種進行人工光誘導光抑制,結果則顯示海檬果對高光之忍受及調節能力較強,在最強光照階段時,其光化學消散比例仍可維持在0.5左右。而反射光譜之結果則顯示海檬果及蘭嶼羅漢松之高光處理者有較高程度的葉黃素循環,其PRI值大約在-0.15左右。葉片色素方面,蘭嶼羅漢松表現出最高的生理可塑性。 綜合上述之結果,海檬果表現出耐陰性樹種之特性,適於栽種於木麻黃林下相對光度5〜40 %之間的孔隙環境;而恆春山枇杷及蘭嶼羅漢松則具有較佳的形態及生理可塑性,可廣泛應用於不同光度的林下環境,適於栽種於木麻黃林分中相對光度40〜60 %之間的孔隙或是林緣處。
In order to improve the stand structure of Casuarina pure stand, many scholars proposed the building of multi-storied stand to obtain the purpose of stabilizing the seacoast forest stand. This study discussed the physiology response of Cerbera manghas, Eriobotrya deflexa f. koshunensis and Podocarpus costalis having different ecology habit to different light intensity by different artificial treatment of shading, to provide the reference of the tree species selecting when building multi-storied stand in different gaps. The experiment results indicate that C. manghas in each light treatment having the greater net height growth and basal diameter growth, the maximum value were 29 cm and 6 mm respectively; P. costalis shows the lower growth. The change of morphology of single leaf, E. deflexa f. koshunensis shows the highest morphology plasticity. The characteristic of photosynthesis indicate that light saturation point of three species seedling growthing under full sunlight were between 700〜900 μmol photon m-2 s-1, and the seedlings of C. manghas and E. deflexa f. koshunensis growthing under full sunlight show greater maximum photosynthetic rate were 10.26 and 10.78 μmol CO2 m-2 s-1 respectively. The part of diurnalvariation of chlorophyll fluorescence indicate that three species seedling growthing under full sunlight were all show that suffering photoinhibition obviously, and their midday value of Fv/Fm and ΦPSⅡat were below 0.75 and 0.70 respectively . The result of artificial lighting-induced photoinhibition indicate that in each species seedling growthing under 5 % full sunlight, C. manghas has better ability of enduring high light and adjustment, their energy allocation of photochemical quenching could maintain about 0.5 at the strongest light intensity level. The result of spectral reflectance indicate that seedling growing under high light of C. manghas and P. costalis had higher xanthophyll cycle level, their value of PRI were about -0.15. The part of leaf pigment indicate that P. costalis shows the highest physiological plasticity. Summarizing the above result, C. manghas shows the characteristic of shade-tolerant tree species, being suitable for planting at the gaps of beefwood stand which light intensity were between 5〜40 % full sunlight; E. deflexa f. koshunensis and P. costalis having better plasticity of physiology and morphology, could adaptate much different light environment, being suitable for planting at the gaps or edge of beefwood stand which light intensity were between 40〜60 % full sunlight.
URI: http://hdl.handle.net/11455/65978
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308200812023300
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.