Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/65983
標題: 三種針葉樹製造直交式結構用實木板材之基本性質探討
Investigation on Fundamental Properties of Cross-Laminated Timber Made from Three Softwood Species
作者: 林志憲
Lin, Chih-Hsien
關鍵字: Cross-Laminated Timber
直交式結構用實木板材
Panel vibration
Modulus of elasticity
Shear modulus
Infrared thermography
平板振動
彈性模數
剪斷模數
波松比
紅外線熱像儀
出版社: 森林學系所
引用: 王松永和丁昭義(1984)林產學(上)。台灣商務印書館。 王松永(2000)木材利用與環境保護。木質建築4。 王松永(1985)柳杉及杉木之材質與利用(I)。林產工業4(4):79–88。 卓志隆(2000a)定向粒片板的振動性質。中華林學季刊33(4):549–558。 卓志隆(2000b)應用複合振動法測定結構用製材品之彈性係數及剪斷係數。林產工業19(1):37–48。 黃彥三(1976)木材在自由振動時之動粘彈性。中華林學季刊9(1)。 黃彥三、陳欣欣、漆陞忠(1993)非破壞技術應用於原木材質評估之可行性研究。林業試驗所研究報告季刊8(1):85–98。 黃彥三、熊如珍、陳欣欣(1990)打音頻譜分析應用於材質評估之可行性。林產工業9(1):43–54。 黃國雄、熊如珍、郭美吟(2001)木材壓縮試驗時試體表面溫度之變化。台灣林業科學16(2):125–132。 黃國雄和余欣怡(2004)紅外線熱像儀應用於合板欠膠之檢測。中華林學季刊37(1):121–125。 黃國雄、李金梅、余欣怡(2009)利用紅外線熱像技術檢測木材二次元縱切削之刀具溫度。中華林學季刊42(2):283–290。 葉民權、李文雄、林玉麗(2006)國產柳杉造林木開發結構用集成材之研究。台灣林業科學21(4):531-546。 楊善復(1998)粒片板特殊組成之非破壞性方法檢測。國立中興大學森林學研究所。碩士論文。 楊德新(2007)中小徑木製造構造用集成材其及工程性能之研究。國立台灣大學生物資源暨農學院森林環境暨資源學系。博士論文。 樑柱工法木構造建築物(住宅)之施工技術手冊(2005)中華木質構造建築協會。行政院農委會林務局。 ASTM D-198 (2009) Static test of lumber in structural sizes. West Conshohocken, Pennsylvania. Andreasson, S., M. Yasumura and L. Davenne (2002) Sensitivity study of the finite element model for wood-framed shear walls. Journal of Wood Science. 48:171–178. Astrup, T., C. O. Clorius, L. Damkilde and P. Hoffmeyer (2007) Size effect of glulam beams in tension perpendicular to grain. Wood Science and Technology. 41:361–372. Brancheriau, L. and H. Bailleres (2002) Natural vibration analysis of clear wooden beams: a theoretical review. Wood Science and Technology. 36: 347–365. Chiu, C. M., S. Y. Wang, C. J. Lin, T. H. Yang and M. C. Jane (2006) Application of the fractometer for crushing strength: juvenile–mature wood demarcation in Taiwania (Taiwania cryptomerioids). Journal of Wood Science. 52:9–14. CNS 11031 (2006) Structural glulam Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C. CNS 14630 (2002) Structural coniferous sawn lumber. Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C. CNS 14631 (2002) Structural sawn lumber used in platform construction. Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C. Erikson, R. G., T. M. Gorman, D. W. Green and D. Graham (2000) Mechanical grading of lumber sawn from small-diameter Lodgepole pine, Ponderosa pine, and Grand fir trees from Northern Idaho. Forest Products Journal. 50(7/8):59–65. Firmanti, A., E. T. Bachtiar, S. Surjokusumo, K. Komatsu and S. Kawai (2005) Mechanical stress grading of tropical timbers without regard to species. Journal of Wood Science. 51:339–347. Green, D. W., T. M. Gorman, J. W. Evans and J. F. Murphy (2004) Improved grading system for structural logs for log homes. Forest Products Journal. 54(9): 52–62. Gsell, D., G. Feltrin, S. Schubert, R. Steiger and M. Motavalli (2007) Cross laminared timber plates: Evaluation and verification of homogenized elastic properties. Journal of Structural Engineering. 133(1):132–138. Gülzow, A., K. Richter and R. Steiger (2010a) Influence of wood moisture content on bending and shear stiffness of cross laminated timber panels. European Journal of Wood and Wood Products. Gülzow, A., R. Steiger and D. Gsell (2010b) Non destructive evaluation of stiffness properties of cross-laminated solid wood panels. WCTE 2010. Larsson, D. (1997) Using model analysis for estimation of anisotropic material constants. Journal of Engineering Mechanics 123(3):222–229. Lee, J. J. and J. P. Hong (2002) Study on half-scale model test for light-frame shear wall. Journal of Wood Science. 48:302–308. Nakamura, M. and T. Kondo (2008) Quantifi cation of visual inducement of knots by eye-tracking. Journal of Wood Science. 54:22–27. Nakao, T., T. Okano and I. Asano (1985) Vibrational properties of a wooden plate. Mokuzai Gakkaishi. 31(10):793–800. Nicolas, R., M. Yasumura and L. Davenne (2003) Prediction of seismic behavior of wood-framed shear walls with openings by pseudodynamic test and FE model. Journal of Wood Science. 49:145–151. Park, H. M., M. Fushitani, K. Sato, T. Kubo and H. S. Byeon (2003) Static bending strength performances of cross-laminated woods made with five species. Journal of Wood Science. 49:411–417. Park, H. M., M. Fushitani, K. Sato, T. Kubo and H. S. Byeon (2006) Bending creep performances of three-ply cross-laminated woods made with five species. Journal of Wood Science. 52:220–229. Popovski, M., J. Schneider and M. Schweinsteiger (2010) Lateral load resistance of cross-laminted wood panels. WCTE 2010. Reddy, J. N. (1999) Theory and analysis of elastic plates, pp.391–424. Ross, R. J., J. I. Zerbe, X. Wang, D. W. Green and R. F. Pellerin (2005) Stress wave nondestructive evaluation of Douglas-fir peeler cores. Forest Products Journal. 55(3):90–94. Sakuragawa, S., Y. Miyazaki, T. Kaneko and T. Makita (2005) Influence of wood wall panels on physiological and psychological responses. Journal of Wood Science. 51:136–140. Steiger, R., A. Gülzow and D. Gsell (2008) Nondestructive evaluation of elastic material properties of cross laminated timber (CLT). Conference COST E53, 29-30 October, The Netherlands. Sugimoto, T. and Y. Sasaki (2007a) Fatigue life of structural plywood under two-stage panel shear load: a new cumulative fatigue damage theory. Journal of Wood Science. 53:211–217. Sugimoto, T., Y. Sasaki and M. Yamasaki (2007b) Fatigue of structural plywood under cyclic shear through thickness I: fatigue process and failure criterion based on strain energy. Journal of Wood Science. 53:296–302. Sugimoto, T., Y. Sasaki and M. Yamasaki (2007c) Fatigue of structural plywood under cyclic shear through thickness II: a new method for fatigue life prediction. Journal of Wood Science. 53:303–308. Tsunetsugu, Y., Y. Miyazaki and H. Sato (2007) Physiological effects in humans induced by the visual stimulation of room interiors with different wood quantities. Journal of Wood Science. 53:11–16. Wang, S. Y., J. H. Chen, M. J. Tsai, C. J. Lin and T. H. Yang (2008) Grading of softwood lumber using non-destructive techniques. Journal of Materials Processing Technology. 208(1):149–158. Wolfe, R. and C. Moseley (2000) Small-diameter log evaluation for value-added structural applications. Forest Products Journal. 50(10): 48–58. Yang, T. H., S. Y. Wang, C. J. Lin, M. J. Tsai and F. C. Lin (2007) Effect of laminate configuration on the modulus of elasticity of glulam evaluated using a strain gauge method. Journal of Wood Science. 53:31–39. Yang, T. H., S. Y. Wang, C. J. Lin and M. J. Tsai (2008) Evaluation of the mechanical properties of Douglas-fir and Japanese cedar lumber and its structural glulam by nondestructive techniques. Construction and Building Materials. 22:487–493. Yang, T. H., S. Y. Wang, M. J. Tsai and C. Y. Lin (2009a) The charring depth and charring rate of glued laminated timber after a standard fire exposure test. Building and Environment. 44(2): 231–236. Yang, T. H., S. Y. Wang, M. J. Tsai, C. Y. Lin and Y. J. Chuang (2009b) Effect of fire exposure on the mechanical properties of glued laminated timber. Materials and Design. 30(3): 698–703.
摘要: 本研究以台灣杉(Taiwania cryptomerioides)、柳杉(Cryptomeria japonica),等國產中小徑木為主要材料,開發國外新興的工程材料-直交式結構用實木板材(Cross-laminated timber, CLT),同時透過強度之設計,評估其作為建築物平板結構使用之可行性。直交式結構用實木板材乃是一種板狀型態之工程木材集成品,集成元於橫向拼接後,於厚度方向做木理直交式之集成堆疊而成。相較於其他板類工程產品,直交式結構用實木板材不僅是結構牆體之構成元素,更可直接作為承重牆與剪力牆等結構牆體,配合集成樑柱之使用,可應用於集成材建築中,作為木結構建築之構成要素。本研究由非破壞檢測技術(Nondestructive testing, NDT)評估構成直交式結構用實木板材之集成元性質開始,探討目視結構分等、超音波技術、木材振動和音響特性與木材力學性質之相關性,結果指出以國產中小徑木造林木台灣杉、柳杉作為直交式結構用實木板材之集成元,常因節的存在而造成木材品等降等之情況,同時中小徑木之未成熟材比例偏高,台灣杉集成元依CNS 14630號標準目視分等等級區分之抗彎強度有二級材(Class 2)>三級材(Class 3)>一級材(Class 1)>級外材(Below grade)之趨勢;柳杉集成元則有一級材(Class 1)>二級材(Class 2)>三級材(Class 3)>級外材(Below grade)之趨勢,然而等級間並無顯著差異。以超音波法、打音法、振動法等非破壞試驗所得之集成元動彈性模數與抗彎彈性模數之相關性高,超音波法之R2值為0.81,打音法、振動法之R2值為0.86,所以非破壞檢測技術可應用於將來作為集成元木材之強度等級區分,可有效而經濟地分選木材等級,其中又以打音法與振動法較佳。 直交式結構用實木板材由平板振動試驗結果獲得特定振動模態頻率,經計算可得三層與五層板直交式結構用實木板材之工程常數(Engineering constants),如縱向彈性模數、橫向彈性模數、剪切模數和波松比等。雖然彈性模數值略高於抗彎試驗值,但是兩者相關性高,整體而言彈性模數有集成理論試驗值>板類振動試驗值>抗彎試驗值之趨勢。縱向彈性模數之超音波試驗集成理論試驗值與抗彎試驗值之R2為0.84,振動集成理論試驗值與抗彎試驗值之R2為0.67。CLT縱向抗彎彈性模數之板類振動試驗值與抗彎試驗值之R2為0.69,橫向彈性模數與抗彎試驗值之R2為0.57,剪斷模數(Gxy)之板類振動試驗值與抗彎試驗所得之試驗值R2為0.91,波松比(υxy)之板類振動試驗值與壓縮試驗所得之試驗值R2為0.97。因此,平板振動非破壞試驗可有效應用於集成板材性質之評估。此外,應用紅外線技術於試材溫度變化之破壞預測結果,顯示試材破壞前之表面溫度有提高的趨勢,提高約0.2–0.4oC,破壞時溫度則明顯提高約2–4oC。
The purpose of this study was to develop a new engineering wood material (Cross-laminated solid wood timber, CLT) made from Taiwania and Japanese cedar small diameter lumber. In addition, feasibility of this kind of product used as construction and building materials was also investigated. CLT is a kind of engineering integrating plate products. Compared to other sheet engineering products, CLT is not only the elements of structural wall, but also directly used as load bearing wall and shear wall structure. In addition, CLT and glulam can use as the construction and building materials in laminated wood building construction. This study here was prior to investigate the properties of laminae and CLT by nondestructive testing (NDT) evaluation, including visual graded method, ultrasonic wave method, vibration method, tap tone method and static bending test. Results indicated that the bending modulus of different grades of lumber in decreasing order were Class2 > Class 1 > Class 3 > Below grade for Taiwania lumber and Class 1 > Class2 > Class 3 > Below grade for Japanese cedar laminae, respectively. However, there were no significant different in all grade classes. According to regression analysis, there were well positive relationships between dynamic modulus of elasticity (DMOE) and modulus of elasticity (MOE) values for all specimens, the R2 value was 0.81 for DMOEu and MOE, 0.86 for DMOEf and MOE, 0.86 for DMOEaL and MOE, 0.86 for DMOEaT and MOE, respectively. Results also indicated that the tap tone and vibration test were the better nondestructive methods for lamina evaluation. In addition, it also demonstrated that NDE techniques can effectively and economically grading wood material. Although the longitudinal MOE (Ext) of 3-layer and 5-layer CLT by bending test were lower than the theoretical calculation and plate vibration test value (Exc), the longitudinal MOE values had trends of Excu (modulus calculated from ultrasonic wave testing) and Exca (modulus calculated from vibration testing) > Exc > Ext. Moreover, there were well relationships between Exc and Ext. The R2 value was 0.84 for Excu and Ext, and 0.67 for Exca and Ext, and 0.69 for Exc and Ext, respectively. There was well relationship between transverse MOE Ey and Eyt. The R2 value was 0.57 for Eyc and Eyt. Shear modulus (Gxy) and poisson's ratio (υxy) were also well relationship between plate vibration test (Gxyc and υxyc) and ASTM D 198 (Gxyt) and compression test (υxyt). The R2 value was 0.91 for Gxyc and Gxyt and 0.97 for υxyc and υxyt. In addition, using infrared temperature scanner to detect the temperature changes of CLT in bending test was found that the temperature of specimen surface increased about 0.2-0.4oC before destruction, and then increased obviously about 2-4oC when the specimen destruction.
URI: http://hdl.handle.net/11455/65983
其他識別: U0005-1808201101515000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1808201101515000
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.