Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66008
標題: 溶膠-凝膠法製備熱塑型PU樹脂-矽氧有機-無機混成材料之研究
Study on Preparation of Organic-inorganic Hybrids of Thermoplastic PU Resins-silica by Sol-gel Process
作者: 彭詩威
Peng, Shih-Wei
關鍵字: Liquefied rice husk
液化稻殼
Organic-inorganic hybrids
Polyurethane resin,
Sol-gel reaction
Tetraethoxysilane
有機-無機混成材料
聚胺基甲酸酯樹脂
溶膠-凝膠反應
四乙基矽氧烷
出版社: 森林學系所
引用: 1. 李文昭、劉正字 (2001) 液化杉木樹皮製造酚-甲醛木材膠合劑。林產工業 20(3):217-226。 2. 李文昭、劉正字、侯家翔 (2002) 木材殘料之液化及其應用-- 杉木木材液化及液化木材膠合劑製備。林業研究季刊 24(1):11-20。 3. 李文昭、劉正字、侯家翔 (2003) 杉木木材之液化處理及其在酚-甲醛膠合劑製造之應用。林業研究季刊 25(3):73-86。 4. 李文昭、張嘉方 (2003) 聚乙二醇液化之探討-杉木及相思樹。林產工業 22(3):205-214。 5. 李文昭、張嘉芳 (2004a) 多元醇液化杉木在聚胺酯發泡體製造之應用。中華林學季刊 37(1):111-119。 6. 李文昭、張嘉芳 (2004b) 多元醇液化相思樹在聚胺基甲酸酯酯發泡體製造之應用。林產工業 23:239-248。 7. 李文昭、劉正字、侯家翔 (2004) 液化相思樹木材製備酚甲醛樹脂膠合劑。林產工業 23(1):43-53。 8. 李文昭、張嘉方 (2007) 異氰酸酯種類對液化木材所製造聚胺基甲酸酯發泡體性質之影響。中華林學季刊 40(3):405-416。 9. 吳秋昌、李文昭 (2007) 多元醇液化柳杉及麻竹之特性。林產工業 26(2):95-106。 10. 宋憶青、李文昭、劉正字 (2005) 溶膠-凝膠法製備不同混成比例及酸催化劑濃度之PVA/Silica混成材料。林產工業 24(2):147-159。 11. 宋憶青、李文昭、劉正字 (2006) 不同種類PVA對溶膠-凝膠法製備PVA/Silica混成材料性質之影響。中華林學季刊 39(1):103-117。 12. 陳奕君、李文昭、劉正字 (2006) 酚液化孟宗竹材製造Resol型水溶性PF樹脂。林產工業 25(3):249-258。 13. 陳奕君、李文昭、劉正字 (2007) 酚液化孟宗竹製備Resol型醇溶性酚樹脂及其性質。 林業研究季刊 29(2):55-66。 14. 陳嘉明 (2000) 生物質木材膠合劑。國立編譯館。台北。pp.102-104;pp.325-330。 15. 蔡信行 主編 (2002) 新版聚合物化學。新文京開發出版有限公司。台北。pp.313-427。 16. 謝立生 譯著 (1997) 熱可塑性彈性體技術手冊。台灣復文興業股份有限公司。pp.2-49。 17. Aelion, R., A. Loebel and F. Eirich (1950) Hydrolysis of ethyl silicate. J. Am. Chem. Soc. 72(12):5705-5712. 18. Brinker, C. J., K. D. Keefer, D. W. Schaefer, R. A. Assink, B. D. Kay and C. S. Ashley (1988) Sol-gel transition in simple silicates Ⅱ. J. Non-Cryst. Solids 63(1-2) : 45-49. 19.Cho, J. W., and S. H. Lee (2004) Influence of silica on shape memory effect and mechanical properties of polyurethane-silica hybrids. Eur. Polym. J. 40:1343-1348. 20. Han. Y. H., A. Taylor, M. D. Mantle and K. M. Knowles (2007) Sol–gel-derived organic–inorganic hybrid materials. J. Non-Cryst. Solids : 313–320. 21. Iler, R. K. (1979) The chemistry of silica from “Sol-Gel science: The physics and chemistry of sol-gel processing”, 1st Academic Press. U.S.A 22. Kobayashi, M., K. Tukamoto and Tomia (2004) Application of liquefied wood to a new resin systemsynthesis and properties of liquefied wood/epoxy resin. Holzforschung 54:93-97. 23. Komarneni, S., R. Roy and D. M. Roy (1984) Evaluation of SrMoO4 in repository simulating tests. Nucl. Technol 62:71-74. 24. Kurimoto, Y., M. Takeda, A. Koizumi, S. Yamauchi, S. Doi and Y. Tamura (2000) Mechanical properties of polyurethane film prepared from liquefied wood with polymeric MDI. Bioresource Technol. 74:151-157. 25. Kurimoto, Y., M. Takeda, S. Doi , Y. Tamura and H. Ono (2001) Network structures and thermal properties of polyurethane films prepared from liquefied wood. Bioresource Technol. 77:33-40. 26. Lai, S. M., C. K. Wang and H. F. Shen (2004) Properties and preparation of thermoplastic polyurethane/silica hybrid using sol–gel process. J. Appl. Polym. Sci. 97:1316-1325. 27. Magdalena, R., A. Kultys and W. Podkościelny (2007) Studies on thermoplastic polyurethanes based on new diphenylethane-derivative diols. II. Synthesis and characterization of segmented polyurethanes from HDI and MDI. Eur. Polym. J. 43:1402–1414. 28. Mascia, L., Z. Zhang and S. J. Shaw (1994) Carbon fiber composites based on polyimide/silica creamers:aspects of structure-properties relationship. Composites Part A 27(12):1211-1221. 29. Ndazi, B. S.,S. Karlsson, J. V. Tesha and C.W. Nyahumwa (2007) Chemical and physical modifications of rice husks for use as composite panels. Composites Part A 38:925-935. 30. Orcel, G. and L. L. Hench, (1986) Effect of formamide additive on the chemistry of silica sol-gels part Ⅰ: NMR of silica hydrolysis. J. Non-Cryst Solids 79 : 117-194. 31. Olejniczak, Z., M. Leczka, K. Cholewa-Kowalska, K. Wojtach, M. Rokita and W. Mozgawa (2005) 29Si MAS NMR and FTIR study of inorganic-organic hybrid gels. J. Mol. Struct. 744:465-471. 32. Patel, M., A. Karera, and P. Prasanna (1987) Effect of thermal and chemical treatment on carbon and silica contents in rice husk. J. Master. Sci. 20: 4387. 33. Silva, C. R. and C. Airoldi (1997) Acid and base catalysts in the hybrid silica sol-gel process. J. Colloid. Interf. Sci., 195(2):381-387 34. Sun, S. J. and T. C. Chang (1996) Studies on thermotropic liquid crystalline polyurethanes.. Synthesis and properties of polyurethane elastomersby using various mesogenic units as chain extender. J. Polym. Sci., Part A : Polym Chem (34) 771-779. 35. Lee, W. J. and M. S. Lin (2008) Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. J. Appl. Polym. Sci. 109: 23-31. 36. Winter, R., J. B. Chan, R. Frattini and J. Joans (1988) The effect of fluoride sil-gel procrss. J. Non-Cryst Solids 105 : 214-222 37. Yao, Y., M. Yoshioka and N. Shiraishi (1995) Rigid polyurethane foam from combined liquefied mixtures of wood and starch. Mokuzai Gakkaishi 41(7):659-668.
摘要: 本研究利用乙二醇與鄰苯二甲酸酐及己二酸反應所合成之E-PA及E-AA兩種醇酸樹脂及市售聚乙二醇為二官能性多元醇原料,將其與HDI、TDI及IPDI等二官能性之異氰酸酯反應形成熱塑型聚胺基甲酸酯(Polyurethane; PU)樹脂,另利用聚乙二醇-丙三醇(PEG-Glycerol)混合液為液化藥劑對稻殼進行液化處理,並將此液化稻殼與異氰酸酯Desmodur N反應形成之PU樹脂;試驗中進一步將上述兩種不同系統之PU樹脂與四乙基矽氧烷(Tetraethoxysilane, TEOS)單體混合,在酸性條件下使TEOS單體進行溶膠-凝膠反應(Sol-gel reaction),並形成有機-無機之高分子混成材料(Organic-inorganic hybrids),期間將探討不同種類PU樹脂與TEOS添加比例對混成材料之基本性質、結構特性與耐熱性等之影響。由試驗結果得知,三種異氰酸酯以芳香族TDI之反應性較高,脂肪族HDI之反應性較低,而脂環族IPDI之反應則最低;熱塑型PU樹脂以EPA-HDI與EPA-TDI有較好的成膜性;FT-IR分析顯示稻殼經液化處理後之降解組成分與液化溶劑形成醚鍵結合;而經由溶膠-凝膠反應形成之PU-Silica混成材料中,其無機之矽氧高分子主要以Si-O-Si與Si-OH鍵結為主;耐溶劑試驗顯示熱塑型PU樹脂-Silica混成材料之耐溶劑性隨TEOS添加量增加而提高,而以液化稻殼為基質所製備之PU-Silica混成材料具良好之耐溶劑性;由DSC與TGA熱分析結果顯示,常溫硬化之PU樹脂在加熱時進一步行架橋反應,混成材料中無機矽氧所形成之三次元網狀結構,會限制有機高分子樹脂之熱活動,熱裂解時重量損失之降解速度較緩和,高溫加熱後之殘留物含量則隨材料中無機矽含量增加而提高。
In this study, alkyd resins of E-PA and E-AA were prepared by reacting ethylene glycol with phthalic anhydride and adipic acid, respectively. Both of the alkyd resins and PEG were used as raw materials of two functionality polyol to react with the two functionality isocyanate, such as HDI, TDI and IPDI, to prepare the thermoplastic polyurethane resin (PU resin). On the other hand, the rice husk was liquefied in polyethylene glycol/glycerol co-solvent with H2SO4 as catalyst, and the liquefied rice husk was blended with the isocyanate of Desmodur N to prepare another PU resin. All of the PU resins were mixed with the monomer of tetraethoxysilane (TEOS) to undergo the sol-gel process under acid condition to form an organic-inorganic hybrid. The effects of the kind of PU resin and the ratio of TEOS added on the basic properties, structure characteristic and thermal properties of PU-Silica hybrids were investigated. The result showed that the aromatic TDI had the highest reactivity than the others. Whereas, the aliphatic HDI had a lower reactivity and the alicyclic IPDI had the lowest reactivity. Both the thermoplastic PU resins of EPA-HDI and EPA-TDI had a well film-forming capability. The FT-IR analysis showed that the degraded components of rice husk reacted with the liquefaction agent to form derivatives by etherification. The inorganic network structure in the PU-Silica hybrid which formed from TEOS by sol-gel process was predominated with Si-O-Si and Si-OH. The solvent resistance of thermoplastic PU-Silica hybrids would be enhanced as the content of TEOS added for the preparation of hybrids increased. The hybrids of PU-Silica based on liquefied rice husk had good solvent resistance. DSC thermo-analysis showed that the room-temperature cured PU resins would undergo a further cross-linking reaction as heating to a higher temperature. TGA analysis showed that the three-dimensional net structure of silica in the hybrids could restrict the thermal motion of organic polymer, and retarded the rate of thermo-degradation. The residue after high temperature heating would increase as the content of inorganic silica increased in the hybrids.
URI: http://hdl.handle.net/11455/66008
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2608200812202100
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.