Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66049
標題: 檸檬桉葉部精油及甲醇抽出物對小花蔓澤蘭種子發芽與生長抑制之研究
Study on Seed Germination and Growth Suppression of Mikania micrantha by Eucalyptus citriodora Leaf Essential Oil and Methanolic Extracts
作者: 林長瑩
Lin, Chen-Ying
關鍵字: Mikania micrantha
小花蔓澤蘭
biological prevention
Eucalyptus citriodora
allelopathy
allelochemicals
essential oil
生物性雜草控制
檸檬桉
相剋作用
相剋化學藥劑
精油
出版社: 森林學系所
引用: 朱德民(1995)植物與環境逆境。明文書局股份有限公司。第309-340頁。 周昌弘(1973)植物毒物質在植物生態上之地位。生長與分化論文集。 第205-217頁。 周昌弘(1985)植物相剋作用之研究。科學發展月刊 13(2): 147-166。 周昌弘、許福星(1991) 覆蓋作物與森林再生之相生相剋作用。雜草學會會刊12(1): 33-40。 周英倫(2008)柳杉抽出成分對大花咸豐草種子發芽及生長抑制之研究。國立中興大學森林學系碩士論文。81頁。 袁秋英、蔣慕琰(1990)雜草之相剋作用。農業藥物毒物試驗所專題報導16:1-8。 徐玲明、蔣慕琰(2002)台灣主要除草劑防治小花蔓澤蘭 (Mikania micrantha Kunth) 之效果。雜草學會會刊 23(2): 73-81。 徐玲明(2006)外來的入侵植物。興大農業 57: 5-29。 張芷瑩(2007)台灣地區歸化植物侵略性評估系統之建立。國立中興大學森林學系碩士論文。94頁。 郭耀綸(1983)銀合歡之植物相剋潛能研究。國立台灣大學森林研究所碩士論文。69頁。 郭耀綸、陳志遠、黃慈薇(2003) 小花蔓澤蘭的生態生理性狀。小花蔓澤蘭危害與管理研討會專刊。第11-27頁。 陳仁昭 (2000)小花蔓澤蘭生物防治及天敵調查成果報告。台灣林地草-小花蔓澤蘭的防治成果報告。林務局出版。第3卷。第1328頁。 陳玉雯 (2001)芹菜連作障礙之研究。國立中興大學園藝學系碩士論文。140頁。 陳滄海、陳仁昭、汪慈慧、王均琍、趙永椿 (2003) 小花蔓澤蘭 (Mikania micrantha) 之生物防治。小花蔓澤蘭危害與管理研討會專刊。第79-96頁。 黃德昌 (2005) 入侵種生物之現況與管理。臺北市立教育大學學報 38 (2) : 33-64。 楊純明、王慶裕、林俊義 (2004) 雜草學與雜草管理。行政院農業委員會農業試驗所。第1頁。 廖周瑜、趙則海、侯玉平、彭少麟 (2007) 五爪金龍對薇甘菊的化感效應研究。生態環境 16(3): 939-943。 蔣永正 (1985) 雜草對殺草劑的抗藥性。農藥世界26: 68。 蔣慕琰、蔣永正、袁秋英(2002)除草劑引起之草相變遷及抗藥性。除草劑在台灣四十年回顧與展望研討會專刊。第25-30頁。 蔣慕琰、徐玲明、袁秋英、陳富永、蔣永正 (2003)台灣外來植物之危害與生態。小花蔓澤蘭危害與管理研討會專刊。第97-109頁。 蔣慕琰、徐玲明、袁秋英、蔣永正 (2005)雜草及外來植物風險評估介紹。農業藥物毒物試驗所技術專刊。133: 1-9。 自然資源與生態資料庫。行政院農業委員會林務局。http://econgisdw.forest.gov.tw/catalog/bio/plant/exotic/index.aspx. 黃士元、葉素春、彭仁傑(2003)小花蔓澤蘭之生態習性及蔓延監測。農政與農情。第145期。2007年7月30日,取自:http://www.coa.gov.tw/view.php?catid=7564. Anaya, A. L. (1999) Allelopathy as a tool in the management of biotic resource in agroecosystems. Crit. Rev. Plant Sci. 18: 697-739. Batish, D. R. , K. Lavanya, H. P. Singh and R. K. Kohli (2007) Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regulation 51: 119-128. Benhammouda, M., R. J. Kremer, H. C. Minor and M. Sarwar (1995) A chemical basis for differential allelopathic potential of sorghum hybrids on wheat. Journal of Chemical Ecology 21(6): 775-786. Berhow, M. A. and S. F. Vaughn (1999) Higher plant flavonoids: biosynthesis and chemical ecology. Allelochemicals Interactions, CRC Press, Boca Raton. pp. 423-437. Blum, U. , T. R. Wentworth, K. Klein, A. D. Worsham, L. D. King, T. M. Gerig and S. W. Lyu (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. Journal of Chemical Ecology 17(6): 1045-1068. Chen, P. K. and G.. R. Leather (1990) Plant growth regulatory activities of artemisinin and its related compounds. Journal of Chemical Ecology 16(6): 1867-1876. Cock, M. J. W. (1982) Potential biological control agents for Mikania micrantha H.B.K. from the neotropical region. Tropical Pest Management 28: 242-254. Cornelissen, T., P. Stiling and B. Drake (2004) Elevated CO2 decreases leaf fluctuating asymmetry and herbivory by leaf miners on two oak species. Global Change Biology 10: 27-36. Cronk, Q. C. B. and J. L. Fuller. (1995) Plant invaders: The threat to natural ecosystems. Chapman and Hall. pp. 241. Das, B., V. S. Reddy, M. Krishnaiah, A.V. S. Sharma, K. Ravi Kumar, J. V. Rao and V. Sridhar (2007) Acetylated pseudoguaianolides from Parthenium hysterophorus and their cytotoxic activity. Phytochemistry 68: 2029-2034. David, I., M. BorbélyVarga and L. Radócz (2005) Changing of amounts of allelochemicals in Italian cocklebur (Xanthium italicum Mor.) during the growing season. Növényvédelem 41(9): 397-403. Dayan, F. E., Hernández, A., Allen, S. N., Moraes, R. M., Vroman, J. A., M. A. Avery, and S. O. Duke (1999) Comparative phytotoxicity of artemisinin and several sesquiterpene analogs. Phytochemistry 50: 607-614. Dudai N., A. Poljakoff-mayber, A. M. Mayer, E. Putievsky and H. R. Lerner.(1999)Essential oils as allelochemicals and their potential use as bioherbicides. Journal of Chemical Ecology 25: 1079-1089. Duke, S. O., K. C. Vaughn, E. M. Groom and H. N. Elsholy (1987) Artemisinin, a constituent of annual wormwood (Artemisia annua) is a selective phytotoxin. Weed Science 35: 499-505. Einhellig, F. A., E. L. Rice, P. G. Risser and S. H. Wender-Bull (1970) Effects of scopoletin on growth, CO2 exchange rates, and concentration of scopoletin, scopolin, and chlorogenic acids in tobacco, sunflower and pigweed. Journal of the Torrey Botanical Society Club 97(1): 22-23. Gao, J. M. and A. L. Zhang (2004) Bioactive constituents from Juglans regia. Symposium "Plants in Health and Culture". Leiden, The Nederlands. pp. 16-17. Hadacek, F. (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit. Rev. Plant Sci. 21: 273-322. Hatzios K K.(1998)Herbicide handbook supplement to seventh edition. Lawrence, KS: Weed Science Society of America. pp. 55–57. Hierro, J. L. and R. M.Callaway (2003). Allelopathy and exotic plant invasion. Plant Soil 256:25–39. Inderjit and K. M. M. Dakshini (1995) On laboratory Bioassays in allelopahy. The Botanical Review 61: 28-31. Inderjit and S.O. Duke (2003) Ecophysiological aspects of allelopathy. Planta 217(4): 529-539. Isman, M. B. (2000) Plant essential oils for pest and disease management. Crop Protection 19: 603-608. Iqbal Z., H. Nasir, S. HIradate and Y. Fujii (2006) Plant growth inhibitory activity of Lycoris radiata Herb. and the possible involvement of lycorine as an allelochemical. Weed Biology and Management 6: 221–227. Jordan, N. (1996) Weed prevention: Priority research for alternative weed management. Journal of Production Agriculture 9: 485-490. Kohli, R.K. and D. Singh (1991) Allelopathic impact of volatile compounds from Eucalyptus on crop plants. Biologia Plantarum. 33: 475-483. Kohli, R. K., D. Rani and R. C. Verma (1993) A mathematical model to predict tissue response to parthenin an allelochemic. Biol. Plantarum 35: 567-576. Kohli, R. K., D. Batish and H. P. Singh (1998) Eucalypt oils for the control of parthenium (Parthenium hysterophorus L.). Crop Protection 17: 119-122. Koitabashi, R., T. Suzuki, T. Kawazu, A. Sakai, H. Kuroiwa and T. Kuroiwa (1997) 1,8-Cineole inhibits root growth and DNA synthesis in the root apical meristem of Brassica campestris L. Journal of Plant Research 110 (1): 1-6. Kong, C. H.,H. B. Li, F. Hu, X. H. Xu and P. Wang (2006)Allelopathicals released by rice roots and residues in soil. Plant Soil 288:47-56. Lydon, J., Teasdale, J. R. and P. K. Chen (1997) Allelopathic activity of wormwood (Artemisia annua) and the role of artemisinin. Weed Science 45: 807-811. Macías, F. A., J. M. G. Mol1nillo, A. Torres, R. M. Varela and D.Castellano(1997)Bioactive flavonoids from helianthus annuus cultivars. Phytochemistry 45(4):683 687. Macías, F. A., N. Chinchilla, R. M. Varela and J. M. G.. Molinillo (2006) Bioactive steroids from Oryza sativa L. Steroids. 71(7): 603-608. Macías, F. A., J. MG Molinillo, R. M Varela and J. CG Galindo (2007) Allelopathy – a natural alternative for weed control. Pest Management Science 63:327–348. Mandava, N. B. (1979) Natural products in plant growth regulation. American Chemical Society 135: 155-159. Manuel, J. R., S. M. Adela and G. Luis (1999) Ecophysiological approach in allelopathy. Critical Reviews in Plant Science 18: 577- 608. Nishimura, H., K. Kaku, T. Nakamura, Y. Fukazawa and J. Mizurani(1982)Allelopathic substances,(±)-p-menthane-3,8-diols isolated from Eucalyptus citriodora Hook. Agricultural and Biological Chemistry 46(1):319-320. Nishimura, H., T. Nakamura and J. Mizurani(1984)Allelopathic effects of p-menthane-3,8-diols in eucalyptus citriodora. Phytochemistry 23(12):2777-2779. Nishida N., S. Tamotsu, N. Nagata, C. Saito and A. Sakai(2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla:inhibition of cell proliferation and DNA synthsis in the root apical meristem of Brassica campestris seedlings. Journal of Chemical Ecology 31:1187-1203. Paiva, N. L. (2000) An introduction to the biosynthesis of the chemicals used in plant-microbe communication. J. Plant Growth Regul. 19: 131-143. Palit, S. (1981) Mikania a growing menance in plantation forestry in West Bengal. Indian Forester 107(2): 69-101. Parsons, W. F. J., R. L. Lindroth and J. G.. Bockheim (2004) Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO2 and O3. Global Change Biology 10: 1666-1677. Pyšek, P. (1995) On the terminology used in plant invasion studies. In : Plant Invasions: general aspects and special problems. (eds. by Prach, M. R and M. Wade) SPB Academic Publishing, Amsterdam, The Netherlands. pp.71-81. Rabotnov, T. A. (1982) Importance of the evolutionary approach to the study of allelopathy. Ékologia 3: 5-8. Rejmánek M. (2000) Invasive plants: approaches and predictions. Austral Ecology 25:497–506. Rice, E. L.(1974)Allelopathy. Acad. Press, New York. Rice, E. L.(1984)Allelopathy. 2nd . Academic Press, Orlando, Florida. pp. 422. Rizvi, S. J. H., V. K. Singh, V. Rizvi and G. R. Waller (1988) Geraniol, an allelochemical of possible use in integrated pest management. Plant Prot. Q. 3: 112-114. Romagni, J. G., S. N. Allen and F. E. Dayan (2000) Allelopathic effects of volatile cineoles on two weedy plant species. Journal of Chemical Ecology 26: 303-313. Sarma, P. K. S. and S. C. Mishra (1986) Biological control of forest weeds in India-retrospect and Prospects. Indian Forester 112: 1088-1093. Saxena, D. B., P. Dureja, B. Kumar, D. Rani and R. K. Kohli (1991) Modification of parthenin. Indian J. Chem. 30B: 849-858. Schweitzer, J. A., J. K. Bailey, B. J. Rehill, G. D. Martinsen, S. C. Hart, R. L. Lindroth, P. Keim and T. G.. Whitham (2004) Genetically based trait in a dominant tree affects ecosystem processes. Ecology Letters 7: 127-134. Singh, H. P., D. R. Batish and R. K. Kohli (2002a) Allelopathic effect of two volatile monoterpenes against bill goat weed (Ageratum conyzoides L.). Crop Protection 21(4): 347-350. Singh, H. P., D. R. Batish, S Kaur, H. Ramezani and R. K. Kohli (2002b) Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Annals of Applied Biology 141(2): 111-116. Singh NB. and R. Singh(2003)Effect of leaf leachate of Eucalyptus on germination, growth and metabolism of greengram, blackgram and peanut. Allelopathy JournaL 11(1):43-52. Singh, H. P., D. R. Batish, N. Setia and R. K. Kohli(2005)Herbicidal activity of volatile oils from Eucalyptus citriodora against Parthenium hysterophorus. Annals of Applied Biology 146: 89- 94. Sivagurunathan M., G. Sumithra Devi and K. Ramasamy(1997)Allelopathic compounds in eucalyptus spp. Allelopathy JournaL 4(2):313-320. Stebbing A. R. D.(1982)Hormesis – the stimulation of growth by low levels of inhibition. The Science of The Total Environment 22:213-234. Su, Y. C., C. L. Ho, E. C. Wang and S. T. Chang. (2006) Antifungal activities and chemical compositions of essential oils from leaves of four eucalypts. Taiwan Journal of Forest Science 21(1): 49-61. Susana I. P., S. R. F. Carmen, P. N. Carlos, J. D. S. Armando and M. S. S. Artur(2005)Chemical composition of the epicuticular wax from the fruits of Eucalyptus globulus. Phytochemical Analysis 16(5):364 – 369. Temmink, J. H. M., J. A. Field, J. C. V. Haastrecht and R. C. M. Merkelbach (1989) Acute and sub-acute toxicity of bark tannins in carp (Cyprinus carpio L). Water Research Watrag 23(3): 341-344. Tuchman, N. C., K. A. Wahtera, R. G. Wetzel and J. A. Teeri (2003) Elevated atmospheric CO2 alters leaf litter quality for stream ecosystems: an in situ leaf decomposition study. Hydrobiologia 495: 203-211. Tworkoski, T.(2002)Herbicide effects of essential oils. Weed Science 50:425-431. Vaughn, S. F. and G.. F. Spencer (1993) Naturally-occurring aromatic compounds inhibit potato tuber sprouting. American Journal of Potato Research 70(7):527-533. Vaughn, S. F. and G.. F. Spencer(1996) Synthesis and herbicidal activity of modified monoterpenes structurally similar to cimmethylin. Weed Science 44:7-11. Waterhouse, D. F. (1994) Biological Control of Weeds: Southeast Asian Prospects. ACIAR, Canberra, Australia. pp.302.
摘要: 小花蔓澤蘭(Mikania micrantha H.B.K)的蔓延及其對農業及生態所造成的危害,已成為全民防除的目標,本研究利用檸檬桉(Eucalyptus citriodora)的葉部,製備精油、甲醇抽出物及熱水抽出物,進行生物抑制活性評估,並進一步的分劃、分離、分析與純化,目的在探討檸檬桉是否可抑制菊科的小花蔓澤蘭(Mikania micrantha H.B.K)的繁衍及散佈,以解決過度蔓延,減少其對森林植物及環境之傷害,並做為開發天然除草劑之基本依據。 綜合試驗結果顯示,在精油抑制方面,檸檬桉精油成分對於抑制小花蔓澤蘭是具有高發芽及生長抑制活性,在培養皿抑制試驗,發現檸檬桉精油對種子發芽、胚軸及胚根生長抑制效果最佳, IC50值均<20 ppm,其次為赤桉(IC50值分別為43 ppm、402 ppm及40 ppm),而柳杉精油則呈較低的抑制效果(IC50值分別為419 ppm、240 ppm及725 ppm)。在精油主成分對種子發芽及生長抑制方面,以含氧萜類化合物1,8-Cineole、Citronellal、Citronellol具有明顯抑制效果,其中以1,8-Cineole抑制效果最佳,發芽抑制的IC 50值<10 ppm,生長抑制的IC 50值均<50 ppm,而萜類碳氫化合物p-Cymene、α-Pinene、β-Pinene 與(+)-Aromadendrene則均呈現低的抑制效果。此外,同為含氧萜類化合物的標準品(-)-Carveol及Citral與酚類化合物Eugenol同樣具有明顯抑制效果,其中以(-)-Carveol及 Eugenol抑制效果最佳,發芽抑制率IC 50<10 ppm,生長抑制的IC 50值均<50 ppm。各精油或是精油主成分於發芽及生長抑制,在沙土種植與在培養皿有相同之趨勢,但在沙土種植時之抑制效果較差。 檸檬桉葉部甲醇抽出物抑制方面,經分劃、分離及生物抑制活性評估,發現正己烷可溶部對於發芽較具抑制活性,乙酸乙脂可溶部對於胚軸及胚根生長抑制較具活性。以HPLC分離,由H-6-7中分離鑑定出5-Hydroxy-7,4′-dimethoxy-6-methyl-flavone及p-Menthane-3,8-diol。其中,p-Menthane-3,8-diol為其主要成分,對於種子發芽及生長抑制顯著,其抑制發芽、胚軸及胚根生長IC50值分別為138 ppm、172 ppm及170 ppm,於200 ppm時對發芽、胚軸及胚根生長抑制分別可達60%、75%及60%以上,但p-Menthane-3,8-diol也是含氧萜類化合物,只是在精油中含量極少。乙酸乙脂可溶部次分離部抑制幼苗生長活性集中於EA-7次分離部,其對胚軸及胚根生長IC50值分別為1200 ppm 及 2400 ppm,抑制效果並不是非常明顯,但仍以HPLC進行分離,由EA-7中分離鑑定出5-Hydroxy-7,4''-dimethoxy-6,8-dimethylflavone。 在檸檬桉葉粉實際應用在小花蔓澤蘭之發芽及抑制試驗上,顯示檸檬桉葉粉對於小花蔓澤蘭種子或幼苗生長是具有抑制效果的。抑制種子發芽方面,前 3 週發芽抑制隨著時間的增加抑制率隨之下降,於第三週時達到最低,但可發現在第 3週之後存活的株數則開始有減少的趨勢。對於幼苗生長抑制,在施灑量大於 20 g檸檬桉葉粉/200 g培養土時,會造成幼苗完全死亡,而施灑量 10 g 及 5 g 的組別,雖未完全死亡,但其存活株數已有明顯差異,施灑量5 g 的組別,莖及根的相對抑制率分別為52%及43%。 綜合以上試驗結果指出,檸檬桉之葉部精油及萃取物是含有相剋作用化合物的,可抑制小花蔓澤蘭種子發芽及幼苗生長,且檸檬桉葉部精油及其精油成分對小花蔓澤蘭種子發芽及幼苗生長抑制有明顯的效果,與精油相比,甲醇抽出物則需要較高的濃度才可達到抑制效果,但若將精油及甲醇抽出物共同使用,能有某種程度上的加成作用。 【關鍵詞】小花蔓澤蘭、生物性雜草控制、檸檬桉、相剋作用、相剋化學藥劑、精油
Abstract Because the widespread mile-a-minute (Mikania micrantha H.B.K) weed become a threat to agriculture and ecosystem, it has become a target of eradication for all people. In this study, we used the leaves of Eucalyptus citriodora to prepare essential oil, methanolic and hot-water extracts, and used bioactivities evaluations to further fractionate, isolate, analyze and purify the active ingredients to examine whether the species could deter the propagation and spread of the Compositae weed and reduce its damage towards forest plants and environments. The endeavor was based on the premise of developing effective herbicides from nature. The overall experimental results indicated that on the inhibitory effects of essential oils, the leaf essential oil of E. citriodora had high germination and growth inhibition efficacies against M. micrantha. In Petri-dish tests, the essential oil was particularly effective in inhibiting the germination, growth of hypocotyle, and growth of radicle, with IC50 values all < 20 ppm. The leaf oils of E. camaldulensis, on the other hand, had IC50 values of 43, 402, and 40 ppm, respectively; Leaf oil of Cunninghamia lanceolata, with lower inhibitory efficacies had IC50 values of 419, 240, and 725 ppm, respectively. .As for the main ingredients of the essential oils in inhibiting seed germination, the oxygenated terpenoides of 1,8-cineole, citronellal, citronellol all had significant inhibitory efficacy. In particular, 1,8-cineole was the most effective, which inhibited seed germination at IC50 < 10 ppm and suppressed both embryonic growths at IC50 < 50 ppm. The hydrocarbon terpenoids such as p-cymene, α-pinene, β-pinene, and …..(+)-aromadendrene all exhibited low inhibitory efficacies. Furthermore, oxygenated terpenoid standards such as (-)-carveoland citral, and phenolics such as eugenol, although not in the leaf oils, did show strong inhibitory effects. (-) carveol and eugenol, in particular, had germination inhibition dosage of IC 50<10 ppm and both growth inhibition dosages of IC 50<50 ppm. The inhibitory effects showed the identical trends when comparing tests on Petri-dishes and on a sandy-loam plot. However, the efficacies were weaker on the latter. The fractionated, isolated methanolic extracts of E. citriodora leaves were also tested for their inhibitory bioactivities. The n-hexane extract was found to be more germination inhibitory against M. micrantha, whereas the ethyl acetate (EA) extract was active in suppressing the growth of hypocotyle and radicle. Upon isolation by HPLC, 5-hydroxy-7,4’-dimethoxy-6-methyl-flavone and p-menthane-3,8-diol were found in the H-6-7 peak. The p-menthane-3,8-diol was the main ingredient and showed significant inhibitory efficiencies against both seed germination and hypocotyle and radicle growths, with IC50 values of 138, 172 and 170 ppm, respectively. At a dosage of 200 ppm, the suppression rates were 60%, 75% and 60%, respectively. Notably, p-menthane-3,8-diol is an oxygenated terpene, which rarely appear in essential oils. The active EA subfraction was concentrated in the EA-7 peak, which had IC50 values against the growths of M. micrantha hypocotyle and radicle .were 1200 and 2400 ppm, respectively. Although the inhibitory effect was not distinct, the HPLC isolated from EA-7 5-hydroxy-7,4''-dimethoxy-6,8-dimethyl flavone. In a field test applying E. citriodora leaf powder on the seed germination and growth of M. micrantha, inhibitory effect was observed. With regard to seed germination, the efficacies decreased with time in the first 3 wks and reached minimum at the 3rd wk. However, the surviving seedling number had a tendency to decrease after the 3rd wk. As for the growth suppression effect, at dosages greater than 20 g of leaf powder to 200 g of cultivating soil, all seedlings died. Whereas for dosages of 10 and 5 g, although total annihilation was not achieved, but the surviving number already showed significant differences. The 5 g group had root and stem growth depressed to 52% and 43%, respectively. Summarizing the above results, the leaf essential oil and extracts of E. citriodora contained fair amounts of allelopathic substances to inhibit the seed germination and seedling growth of M. micrantha. Furthermore, its leaf oil and oil ingredients hade marked inhibitory effects unlike those of the leaf methanolic extracts which were inhibitory only at much higher concentrations. If both were applied simultaneously, a synergistic effect was observed. 【Key words】Mikania micrantha, biological prevention, Eucalyptus citriodora, allelopathy, allelochemicals, essential oil
URI: http://hdl.handle.net/11455/66049
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408200918020000
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.