Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66085
標題: 溪頭地區柳杉林分塊狀皆伐對土壤養分動態的影養
Effects of block clear-cutting on dynamics of soil nutrients in Cryptomeria japonica stand at chitou
作者: 陳怡妙
Cheng, Yi-Miao
關鍵字: Cryptomeria japonica
柳杉
block clear-cutting throghfall
surface water
soil solution
soil nutrients
塊狀皆伐
穿落水
地表水
土壤水溶液
土壤養分
出版社: 森林學系所
引用: 王子定 (1966) 應用育林學。國立編譯館。台灣。 王巧萍 (1990) 七種林分穿落水養分含量變化之比較。國立中興大學森林研究所碩士論文。 余瑞珠、江博能、江凱楹、王亞男、王明光 (2008) 溪頭柳杉人工林疏伐處理對於土壤養分動態之影響。中華林學季刊 41(3): 365-376。 何鎮平 (1977) 台大實驗林溪頭人工林森林土壤性質之分析。台灣大學森林研究所碩士論文。 林青蓉、陳信雄、陳明杰 (1991) 溪頭試驗集水區降水及溪流水質之研究。台大實驗林研究報告 5(2): 67-93。 林登秋、金恆鑣、夏禹九、王立志 (1998) 福山試驗林硫酸根與無機氮沉降之探討。中華林學季刊 31(2): 153-164。 邱志明、林振榮、羅卓振南、陳燕章 (2002) 疏伐及修枝對六龜地區台灣杉造林木生長之影響。中華林學季刊35(1): 43-54。 金恆鑣 (1988) 森林生態系的養分循環。中華林業季刊 21(4): 49-59。 金恆鑣、劉瓊霦、夏禹九、黃正良 (2003) 福山天然闊葉林生態系對降水水化學的交互作用。台灣林業科學 18(4): 363-373。 胡弘道 (1988) 森林土壤學。國立編譯館。台灣。 夏禹九、王立志、黃正良、金恆鑣 (1996) 森林集水區坡地逕流路徑之研究。台灣林業科學 11(4): 481-486。 翁世豪 (2004) 觀霧地區柳杉人工林強度疏伐後微環境及植群之比較。國立台灣大學森林學研究碩士論文。台北。台灣。 張仲德、林登秋、薛美莉 (2003) 彰化市與台中市酸沉降之比較研究。台大地理學報 33: 77-90。 張瑀芳 (2006) 太平山區柳杉人工林下土壤的種類與疏伐處理對土壤養分之影響。國立宜蘭大學自然資源學系碩士論文。宜蘭。台灣。 梁晏綾 (2007) 台灣中部溪頭地區總沉降與霧化學特性之研究。國立彰化師範大學地理系碩士論文。彰化。台灣。 莊舜堯、陳岳民、王明光、郭幸榮、黃正良、金恆鑣 (2005) 森林疏伐對土壤氮素礦化及硝化作用之影響。台灣林業科學 20(2): 167-177。 許世宏、魏聰輝、姚榮鼐、陳信雄、郭幸榮、陳明杰 (1994) 溪頭地區降雨與林內穿落雨的pH值及鹽基離子濃度。台大實驗林研究報告 8(3): 83-97。 陳明杰、姚榮鼐、魏聰輝 (1992) 溪頭天然林雨水與穿落水的pH值之初步觀測。台大實驗林研究報告 6(1): 25-38。 陳信雄 (2006) 森林水文學。國立編譯館主編。明文書局印行。 陳紫娥、張石角 (1987) 溪頭森林遊樂區之地質、地形及其發展史。台大實驗研究報告季刊 1(1): 63-76。 陳耀德 (2003) 鴛鴦湖森林生態系大氣養分輸入之探討。國立東華大學自然資源管理研究所碩士論文。台北,台灣。 游繁結、鍾啓榮 (1999) 關刀溪森林集水區降雨與逕流關係研究。林業研究季刊 21(2): 9-20。 劉明芬、陳信雄 (1992) 森林小集水區逕流特性之研究。台大實驗林研究報告 6(3): 87-106。 劉啟文 (2005) 亞洲沙塵好發期間雲水化學特性分析。國立中央大學大氣物理研究所碩士論文。 劉儒淵、鐘年均、陳子英 (1990) 溪頭森林遊樂區之植物資源。林業叢刊 67: 269-304。 鄭曼婷、林明弘、巫培任、趙文燦、林瑋翔 (2007) 台中沿海地區酸沉降特性及其影響因子分析。中華民國環境保護學會學刊 30(2): 59-71。 薛美莉 (2009) 烏石坑地區18年生台灣杉人工林雨水之質量組成。特有生物研究 11(2): 1-19。 顏江河、楊蕙綺 (2004) 琉球松菌根對煤礦棄土地土壤與土壤溶液化學性質之影響。林業研究季刊 26(3): 71-82。 Aamlid, D. K., T. K. Venn, A. O. Atuanes, S. Solberg, G. Hylen, N. Christophersen and E. Framstad (2000) Change of forest health in Norwegian boreal forests during 15 years. Forest Ecology and Management 127: 103-118. Aber, J. D., K. J. Nadelhoffer, P. Steudler and J. M. (1989) Nitrogen saturation in northern forest ecosystems: excess nitrogen from fossil fuel combustion may stress the biosphere. Bioscience 39(6): 378-386. Anderson, S. P. and W. E. Dietrich (2001) Chemical weathering and runoff chemistry in a steep headwater catchment. Hydrological Processes 15: 1791-1815. Balestrini, R. and A. Tagliaferri (2001) Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy). Atmospheric Environment 35: 6421-6433. Bäumler, R. and W. Zech (1997) Atmospheric deposition and impact of forest thinning on the throughfall of mountain forest ecosystems in the Bavarian Alps. Forest Ecology and Management 95: 243-251. Bäumler, R. and W. Zech (1998) Soil solution chemistry and impact of forest thinning in mountain forests watersheds in the Bavarian Alps. Forest Ecology and Management 108: 231-238. Blake, G. R. and K. H. Hartge (1986) Bulk density. In: Klute, A. (ed.) Methods os soil analysis. Part 1. Physical and mineralogical methods. 2nd ed. pp. 363-382. Agronomy 9. SSSA, Madison, WI, USA. Bruijnzeel, L. A. (1991) Nutrient input-output budgets of tropical forest ecosystems. Journal of Tropical Ecology 7: 1-24. Dahlgren, R. A. and C. T. Driscoll (1994) The effects of whole-tree clear-cutting on soil processes at the Hubbard Brook experimental forest, New Hampshire, USA. Plant and Soil 158: 239-262. Driscoll, C. T., R. D. Fuller and W. D. Schecher (1989) The role of organic acids in the acidification of surface waters in the eastern U.S. Water Air Soil Pollution 43: 21-40. Emmett, W. W. (1978) Overland flow. pp.145-146. In: Kirkby M. J. (ed.). Hillslope Hydrology. Wiley, New York. Finzi, G., A. Novo and S. Viarengo (1991) An application of multivariate analysis to acid rain data in Northern Italy to discriminate natural and man-made compounds. Environmental Monitoring and Assessment 17: 273-280. Forsyth, A. R., K. A. Bubb andM. E. Cox (2006) Runoff, sediment loss and water quality from forest roads in a southeast Queensland coastal plain Pinus plantation. Forest Ecology and Management 221: 194–206. Gökbulak, G. F., Y. Serengil, S. Özhan, N. Özyuvacı and A. N. Balcı (2008) Relationship between streamflow and nutrient and sediment losses from an oak-beech forest watershed during an 18-year long monitoring study in Turkey. European Journal of Forest Research 127: 203-212. Greenland, D. J. and J. M. L. Kowal (1960) Nutrient content of the moist tropical forest in Ghana. Plant amd Soil 12: 154-174. Homann, P. S., D. W. Cole, H. Van Miegroet and J. E. Compton (1994) Relationships between cation and nitrate concentrations in soil solution from mature and harvested red alder stands. Canada Journal of Forestry Research 24: 1646-1652. Howells, G. (1990) Acid rain and acid waters. Ellis Horwood, London, UK. pp. 262. Hsiao, H. M., T. C. Lin, J. L. Hwong, C. C. Huang and N. H. Lin (2007) Precipitation chemistry at the Lienhuachi experimental forest in central Taiwan. Taiwan Journal of Forestry Science 22(1): 1-13. Hursh, C. R. and E. F. Brater (1941) Separating storm-hydrographs from small drainage-areas into surface- and subsurface-flow. Transactions, American Geophysical Union. pp. 863-871. Igawa, M., T. Kase, K. Satake and H. Okochi (2002) Severe leaching of calcium ions from fir needles caused by acid fog. Environmental Pollution 119: 375-382. Johannes, A. H., Y. L. Chan, K. Dackson and T. Saleski (1986) Modeling of throughfall chemistry and indirect measurement of dry deposition. Water, Air and Soil Pollution 30: 211-216. Jordan, C. F. (1985) Nutrient cycling in tropical forest ecosystems. Wiley, New York. pp.330. Kennedy, I. R. (1986) Acid soil and acid rain: the impact on the environment of nitrogen and sulphur cycling. Research Studues Press, Letchworth, Hertfordshire, England. King, H. B., Y. J. Hsia, C. B. Liou, T. C. Lin, L. J. Wang and J. L. Hwong (1994) Chemistry of precipitation, throughfall, stemflow and streamwater of six forest sites in Taiwan. In: Peng, C. I and C. H. Chou (eds.) Biodiversity and terrestrial ecosystems, Institute of Botany, Academia Sinica Monograph Series no. 14. p.355-362. Lenis, R., S. Mazurier, F. Gourbiere and A. Josser (1986) Rapid determination of the nitrification potential of an acid forest soil and assessment of its variability. Soil Biological Biochemistry 18: 239-40. Liechty, H. O., G. D. Morz and D. D. Reed (1993) Cation and anion fluxes in northern hardwood throughfall along an acidic deposition gradient. Canadian Journal of Forest Research 23: 457-467. MacDonald, C. C. (1977) Methods of soil and tissue analysis used in the analytical laboratory. Canadian Forestry Service Information Report MM-X-78. McLaughlin, J. W. and S. A. Phillips (2006) Soil carbon, nitrogen and base cation cycling 17 years after whole-tree harvesting in a low-elevation red spruce (Picea rubens) – balsam fir (Abies balsamea) forested watershed in central Maine, USA. Forest Ecology and Management 222: 234-253. McLean, E. O. (1982) Soil pH and lime requirement. In: Page et al. (eds.) Methods of soil analsis. Part Ⅱ. Chemical and microbiological properties 2nd. ASA.CSSA. SSSA. Madison, Wisconsin. Naemura A., T. Yoshikawa, K. Sato and Y. Dokiya (2003) Measurements of throughfall and stemflow of Cryptomeria japonica in Oku-chichibu and Tama Hills. Japanese Journal of Biometeorology 39(4): 121-125. Olsen, S. R. and L. E. Sommers (1982) Phosphorus. In: Page et. al. (eds.) Methods of soil analysis. Part Ⅱ. Chemical and microbiological properties 2nd. ASA.CSSA. SSSA. Madison, Wisconsin. Parfitt, R. L., G. J. Salt and L. F. Hill (2002) Clear-cutting reduces nitrate leaching in a pine plantation of high natural N status. Forest Ecology and Management 170: 43-53. Rhoades, J. D. (1982) Cation exchange capacity. In: Page et al. (eds.) Methods of soil analysis. Part Ⅱ. Chemical and microbiological properties 2nd. ASA. CSSA. SSSA. Madison, Wisconsin. Sase, H., A. Takahashi, M. Sato, H. Kobayashi, M. Nakata and T. Totsuka (2008) Seasonal variation in the atmospheric deposition of inorganic constituents and canopy interactions in a Japanese cedar forest. Environmental Pollution 152: 1-10. Thimonier, A., M. Schmitt, P. Waldner and P. Schleppi (2008) Seasonality of the Na/Cl ratio in precipitation and implications of canopy leaching in validating chemical analyses of throughfall samples. Atmospheric Environment 42: 9106-9117. Tokuchi, N., H. Takeda and G. Iwatsubo (1993) Vertical changes in soil solution chemistry in soil profiles under coniferous forest. Geoderma 59: 57-73. Ulrich, B. (1983) Soil acidity and its relation to acid deposition. pp. 127-145. In: Ulrich B. and K. Pankrath (eds.). Effects of accumulation of air pollutants in forest ecosystem. Reidel, Dordrecht, Netherlands. Visser, S. (1961) Chemical composition of rainwater in Kampala, Uganda and its relation to meteorological and topographical conditions. Journal Geophysical Research 66: 3759-3765. Wang, L. J., H. B. King, Y. J. Hsia, R. B. Harrison, T. C. Lin, J. L. Hwong and C. B. Liou (1997) Changes in chemistry in hydrological processes of the Fushan experimental forest. Quarterly Journal of Chinese Forestry 30(2): 203-215.
摘要: 本研究於溪頭柳杉(Cryptomeria japonica)人工林比較小面積塊狀皆伐及未疏伐兩種處理之總沉降(大氣沉降)、穿落水、地表水、土壤水溶液的水化學組成及土壤特性,藉以瞭解塊狀皆伐對柳杉人工林生態系土壤養分動態的影響。 未疏伐區穿落水量佔塊狀皆伐區總沉降量85%,相對截留量佔15%。未疏伐區地表水量和懸浮值皆大於塊狀皆伐區。塊狀皆伐區總沉降和未疏伐區穿落水的pH值各為5.6和5.5,無顯著差異(p>0.05)。兩區的地表水pH值皆高於土壤水溶液;塊狀皆伐區土壤水溶液pH值各層間無顯著差異(p>0.05),未疏伐區土壤水溶液的pH值隨著土層加深而逐漸提升,具中和酸性作用;土深45和60 cm處,未疏伐區高於塊狀皆伐區的pH值。塊狀皆伐區總沉降的離子濃度以NH4+ (524.77 μeq L-1) 及NO3- (60.9 μeq L-1) 為最高,且所有塊狀皆伐區水樣的離子濃度皆小於未疏伐區。降雨經過未疏伐區樹冠後,離子濃度以Ca+2、Mg+2、Cl-增加最多;到達地表時,除了塊狀皆伐區的H+ 下降外,所有地表水的離子濃度皆增加,且未疏伐區地表水離子濃度皆大於塊狀皆伐區;進入土層中,除了NH4+濃度下降外,所有無機離子均顯著增加,尤其是Ca+2和Mg+2增加最為明顯。塊狀皆伐區的土壤pH值顯著高於未疏伐區,全氮量、CEC則反之。NH4+-N、NO3--N及有效磷在塊狀皆伐區和未皆區伐區間無顯著差異,但和季節變化有略微差異。 綜合言之,溪頭柳杉人工林經過塊狀皆伐後,相較於未疏伐區穿落水和地表水以及土壤水溶液於土深45 cm處的離子濃度略為下降,但對地表水量和懸浮值似乎沒有增加的現象,反而有些微降低,而經過塊狀皆伐一年後,這兩區的水化學性趨於相近,顯示溪頭柳杉人工林皆伐跡地仍具有相當大的緩衝力。
The purposes of this study were to compare changes of water chemistry for precipitation, throughfall, surface water, soil solution and soil properties in block clear-cutting and un-thinning in a Japanese cedan ( Cryptomeria japonica) stand in the Chitou Experimental Forest. We would like to understand the impact of small block clear-cutting on the nutrient dynamics of man-made stand. The amount of throughfall and rainfall interception in the un-thinning plots was 85% and 14.95%, respectively, of the bulk precipitation in the clear-cutting condition. The amount and sediment of suface water in un-thinning condition was higher than that in the clear-cutting condition. There was no significant difference (p>0.05) of pH value between clear-cutting (5.6) and un-thinning condition (5.5). The pH value of soil solution was lower than that of surface water in both conditions. In clear-cutting condition, the pH of soil solutions had no significant differences (p>0.05) between soil layers; as in un-thinning condition, the pH of soil solution increased with the increasing soil depth indicating that acid was buffered. The pH of solution at depth 45 and 60 cm below soil surface in un-thinning condition was higher than that of clear-cutting condition. The bulk precipitation in clear-cutting condition was dominated by NH4+ (524.77 μeq L-1) and NO3- (60.9 μeq L-1); in addition, the ion concentrations were lower than un-thinning condition. The result showed that the concentrations of Ca+2, Mg+2 and Cl- increased dramatically when rainwater flowed through the canopies. The ion concentrations of surface water in un-thinning condition were higher than in clear-cutting condition. Compared to the throughfall, all ion concentrations of surface water in clear-cutting condition increased, except H+. As NH4+ decreased, all the concentrations of inorganic ions increased, especially Ca+2 and Mg+2 when water entered the soil. The pH value and bulk density of the soil in clear-cutting condition were significantly higher than in un-thinning condition, however the total Kjeldahl nitrogen and CEC were lower. There were no significant differences in NH4+-N, NO3--N, the fresh soil moisture and available phosphorous between un-thinning and clear-cutting condition, but these figures varied as the season changes. In conclusion, the ion concentration of throughfall, surface water and soil solution at a depth of 45 cm slightly decreased after the man-made C. japonica stand was clear-cutting. Clear-cutting treatment resulted in a slight decrease in run-off and sediment of surface water. However, the water chemistry of both treatments tended to be similar in one year after small block clear-cutting, which indicated the block claear-cutting is still with good buffer capacity.
URI: http://hdl.handle.net/11455/66085
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108201015421200
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.