Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66199
標題: Application of Mikania micrantha Vinegar and its Derivative Fractions on the Repellence of Forcipomyia taiwana and Antibacterial Activity
小花蔓澤蘭醋液及其分離部於小黑蚊忌避性與抗菌性之應用
作者: 胡政欣
Hu, Cheng-Hsin
關鍵字: 小花蔓澤蘭醋液
M. micrantha vinegar
分離部
台灣鋏蠓(小黑蚊)
忌避性
抑菌活性
derivative fractions
F. taiwana
repellent activity
antibacterial activity
出版社: 森林學系所
引用: 王均琍(2000)台灣林地雜草-蔓澤蘭種子發育與萌芽階段之生物與藥劑防除。行政院農業委員會林務局委託計畫成果報告。 王凱助、葉金彰(1997)台灣鋏蠓幼蟲孳生源調查。第九屆病媒防治技術研討會論文集 行政院環境保護署 pp.111-123。 王惠鵬(1997)南投地區台灣鋏蠓之化學防治。國立中興大學昆蟲學系研究所碩士論文 pp.1-37。 孔國輝、吳七根、胡啟明(2000a)外來雜草薇甘菊(Mikania micrantha H.B.K.)在我國的出現。熱帶亞熱帶植物學報 8(1):27。 孔國輝、吳七根、胡啟明、葉萬輝(2000b)薇甘菊(Mikania micrantha H.B.K.)的形態、分類與生態資料補記。熱帶亞熱帶植物學報 8(2):128-130。 古喬云、鄭森松、陳煇仁、張上鎮、張惠婷(2007)柳杉材部精油抗細菌活性成分之研究。中華林學季刊 40(2):241-250。 生物急毒性檢測方法-鯉魚靜水式法(2011)。中華民國100年4月7日環署檢字第1000027456號公告 pp.1-18。 生物急毒性檢測方法-米蝦靜水式法(2011)。中華民國100年4月8日環署檢字第1000027391號公告 pp.1-18。 何姣青、曹賢坤、巫中安、沈倩如(2004)竹醋液成分分析與抗菌應用。工業材料月刊 205:93-96。 何振隆、蘇裕昌(2008)精油之抗菌活性。林業研究專訊 15(3):31-37。 李文馨、古喬云、張惠婷、張上鎮(2007)林木天然物之抗細菌活性。中華林學季刊 40(4):577-589。 李忠琴、歐敏銳、許小平、郭養浩(2003)竹醋液抑制腐敗菌的作用研究。食品科技 7:78-80。 李貽華、徐慈鴻(2004)多環芳香族碳氫化合物(PAHs)與植物。行政院農業委員會農業藥物毒物試驗所技術專刊第132號 pp.1-12。 李學進(1996)小黑蚊之生態及綜合防治。第八屆病媒防治技術研討會論文集 行政院環境保護署 pp.15-23。 李學進、侯豐男(1997)台南地區台灣鋏蠓之季節消長與藥劑防治。第九屆病媒防治技術研討會論文集 行政院環境保護署 pp.125-136。 李學進、曾國政(2006)小黑蚊之危害及防治。環境衛生用藥及病媒防治技術研討會論文集 pp.265-280。 杜武俊、施昌良、廖癸閔、賴佳妤、陳麗仰、葉文斌、謝伯岳、王亞元(2013)台灣鋏蠓行為探討與幼蟲防治技術。2013小黑蚊防治技術之研發研討會 行政院國家科學委員會。 吳柏林(1994)醫用微生物學。藝軒圖出版社 pp.6-37。 吳哲洙、王思宏、崔香蘭、陳鐵(2003)木醋液精製方法的探討。延邊大學學報(自然科學版) 29(3):203-207。 林庭瑋(2011)小花蔓澤蘭慢速熱解及其醋液應用於小黑蚊防治之初探。國立中興大學森林學系碩士論文 pp.1-83。 林庭瑋、盧崑宗(2012)不同熱解溫度範圍收集小花蔓澤蘭粗醋液之基本性質。中華林學季刊 45(2):201-220。 林裕仁、黃國雄、王瀛生(2003)淺談竹炭之生產與利用。林業研究專訊 10(3):23-27。 邱約翰(2010)木質生質物於流體化床進行快速裂解之研究。國立中興大學森林學系碩士論文 pp.1-94。 柳忠婉、丁爾成、蔡進來、梁玉寬(1964)台灣鋏蠓孳生地調查。昆蟲學報 13(5):757-760。 胡永煌(2002)竹炭、竹醋液生產技術及應用開發研究進展。林產化學與工業 22(3):79-83。 施昌良(2010)小黑蚊之化學防治。2010小黑蚊防治技術研討會 行政院環境保護署小黑蚊防治推廣中心。 孫斐、翁愫慎、李國欽(2002)常用有機磷劑農藥對水生生物風險評估。植物保護學會會刊 44:171-183。 常雅寧、俞建瑛、倪煒、沃裊平(2005)竹醋液對食品汙染菌的抗菌作用的研究。林產化學與工業 25(4):83-85。 張伯熙(1997)台灣鋏蠓之殺蟲劑篩選及其誘集研究。國立中興大學昆蟲學系研究所碩士論文 pp.29-68。 張伯熙、葉金彰(1997)物理方法誘集小黑蚊。第九屆病媒防治技術研討會論文集 行政院環境保護署 pp.137-150。 陳伯光、吳思敬、黃國雄、林翰謙(2010)不同溫度採集木/竹醋液基本性質及抑菌性之探討。嘉大農林學報 7(2):95-117。 陳莉鵑(2006)竹醋液之蒸餾精製及其餘植物生長促進劑之應用。國立中興大學森林學系研究所碩士論文 pp.1-86。 陳富永、徐玲明、蔣慕琰(2002)小花蔓澤蘭與蔓澤蘭形態區別及RAPD-PCR分析。植物保護學會會刊 44:51-60。 陳滄海、陳仁昭、汪慈慧、王均琍、趙永椿(2003)小花蔓澤蘭(Mikania micrantha) 之生物防治。小花蔓澤蘭危害與管理研討會專刊 中華民國雜草學會pp.79-96。 陳嘉明(2000)生質物木材膠合劑。國立編譯館 pp.11-14;78-85;135-140。 陳錦生、連日清、徐世傑(1980)台灣鋏蠓之形態及掃描電子顯微鏡觀察(雙翅 目:蠓科)。國立中興大學昆蟲學報 15:211-226。 陳錦生、連日清、徐世傑(1982)花蓮地區台灣之鋏蠓季節消長研究。國立台灣大學植物病蟲害學刊 9:68-91。 郭嘉雯(2005)竹醋液基本性質及其抗植物病原細菌之探討。國立中興大學森林學系碩士論文 pp.1-76。 郭耀綸(2000)台灣林地雜草-蔓澤蘭之個體生態學調查。行政院農業委員會林務局委託計畫成果報告。 郭耀綸、陳志遠、林杰昌(2002)藉連續切蔓法及相剋作用防治外來入侵的小花蔓澤蘭。台灣林業科學 17(2):171-181。 郭耀綸、陳志遠、黃慈薇(2003)小花蔓澤蘭的生態生理性狀。小花蔓澤蘭危害與管理研討會專刊 中華民國雜草學會 pp.11-27。 莊益源(1994)台灣鋏蠓之生活史及其在南投地區之季節消長。國立中興大學昆蟲學系碩士論文 pp.1-52。 莊純琍(2012)柳杉木醋液有機成分之分離及其木材防腐與促進種子發芽之應用。國立中興大學森林學系研究所碩士論文 pp.1-98。 黃士元、彭仁傑、郭曜豪(2003a)小花蔓澤蘭在台灣之蔓延及監測。小花蔓澤蘭危害與管理研討會專刊 中華民國雜草學會 pp.123-145。 黃士元、廖天賜、郭曜豪(2003b)外來植物殺手-小花蔓澤蘭。自然保育季刊 42:13-19。 裘明華、榮雲龍(1979)台灣鋏蠓生活史研究(雙翅目:蠓科)。昆蟲學報 22(4):437-442。 裘明華、榮雲龍(1980)台灣鋏蠓幼期的形態。昆蟲學報 23:66-75。 廖天賜(2003)小花蔓澤蘭(Mikania micrantha)在世界各地蔓延及危害。小花蔓澤蘭危害與管理研討會專刊 中華民國雜草學會 pp.147-153。 劉文勇(2010)臺灣鋏蠓(雙翅目:蠓科)之飼育技術、吸血習性及其誘集器開發。國立中興大學昆蟲學系博士論文 pp.1-152。 蔣慕琰、徐玲明、陳富永(2002)入侵植物小花蔓澤蘭(Mikania micrantha Kunth)之確認。植物保護學會會刊 44:61-65。 錢麗紅、陶妍、謝晶(2010) 茶多酚對金黃色葡萄球菌和銅綠假單胞菌的抑菌機理。微生物學通報 37(11):1628-1633。 謝志強、殷正華(2008)全球生質能源產業與技術發展現況與趨勢。科技發展政策報導 15(5):15-39。 謝伯岳(2007)台灣鋏蠓Forcipomyia taiwana (Shiraki)產卵習性、棲群動態與對昆蟲生長調節劑感受性之研究。國立中興大學昆蟲學研究所碩士論文 pp.1-83。 杉浦銀治(1995)木酢液の不思議。全國社團法人林業改良普及學會。東京。pp. 130-164。 城代 進、矢野省一、上原 徹(1989)木酢液の成分とその燻香。木材學會誌6(35):555-563。 森田 泰弘、岡部 敏弘、光源寺宏治、福井 徹、福田 清春(2011)木材の熱分解物から調製した木酢油の抗菌活性と木材保存剤としての利用。木材保存 37(4):165-170。 Akakabe, Y., Y. Tamura, S. Iwamoto, M. Takabayashi and T. Nyuugaku (2006) Volatile organic compounds with characteristic odor in bamboo vinegar. Biosci. Biotechnol. Biochem. 70: 2797-2799. Alen, R., E. Kuoppala and P. Oesch (1996) Formation of the main degradation compound groups from wood and its components during pyrolysis. J. Anal. Appl. Pyrolysis 36: 137-148. Baimark, Y. and N. Niamsa (2009) Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets. Biomass Bioenerg. 33: 994-998. Bilehal, D., L. Li and Y. H. Kim (2011) Gas chromatography–mass spectrometry analysis and chemical composition of the bamboo-carbonized liquid. Food Anal. Methods DOI 10.1007/s12161-011-9194-4. Bisignano, G., A. Tomaino, R. Cascio, G. Crisafi, N. Uccella and A. Saija (1999) On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 51: 971-974. Chen, C. S., J. C. Lin, Y. N. Lin and S. J. Hsu (1981) The diurnal biting pattern of a bloodsucking midge Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera:Ceratopogonidae). Chinese J. Microbiol. Immunol. 14: 54-56. Cueva, C., M. V. Moreno-Arribas, P. J. Martin-Alvarez, G. Bills, M. F. Vicente, A. Basilio, C. L. Rivas, T. Requena, J. M. Rodriguez and B. Bartolome (2010) Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 161: 372-382. Das, N. G., I. Baruah, P. K. Talukdar and S. C. Das (2003) Evaluation of botanicals as repellents against mosquitoes. J. Vect. Borne. Dis. 40: 49-53. Debboun, M., S. P. Frances and D. Strickman (2006) Insect repellents:principles, methods, and uses. Taylor Francis Boca Raton, USA pp.279-280; 291-292. Demirbaş, A. (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers. Mgmt. 41: 633-646. Demirbaş, A. (2006) Effect of temperature on pyrolysis products from four nuts shells. J. Anal. Appl. Pyrolysis 76: 285-289. Dong, J., F. Li and K. Xie (2012) Study on the source of polycyclic aromatic hydrocarbons (PAHs) during coal pyrolysis by PY–GC–MS. J. Hazard. Mater. 243: 80-85. Elliott, D. C. (2004) Chemicals from biomass. Ency. Eng. 1 pp.163-174. Fabbri, D. and I. Vassura (2006) Evaluating emission levels of polycyclic aromatic hydrocarbons from organic materials by analytical pyrolysis. J. Anal. Appl. Pyrolysis 75: 150-158. Gang, X., M. J. Ni, H. He, C. Yong, X. Rui, Z. P. Zhong and K. F. Cen (2007) Fluidized-bed pyrolysis of waste bamboo. J. Zhejiang Univ. Sci. 8(9): 1495-1999. He, R., X. P. Ye, B. C. English and J. A. Satrio (2009) Influence of pyrolysis condition on switchgrass bio-oil yield and physicochemical properties. Bioresour. Technol. 100: 5305-5311. Jin, T., Y. Wu and Q. Wang (2012) The inhibitory effects of bamboo vinegar against vacteria and fungi. Information Tech. Agricultural Eng. AISC 134 pp.451-457. Koutinas, A. A., R. Wang and C. Webb (2004) Evaluation of wheat as generic feedstock for chemical production. Ind. Crop Prod. 20: 75-88. Kucuk, M. M. and A. Demirbaş (1997) Biomass conversion process. Energy Convers. Mgmt. 38(2): 151-165. Lien, J. C. (1989) Taxonomic and ecological studies on the biting midges of the subgenus Lasiohelea, genus Forcipomyia from Taiwan. J. Taiwan Museum 42: 37-77. Lien, J. C. (1991) Seven new species and four new record of Forcipomyia subgenus Lasiohelea from Taiwan (Diptera: Ceratopogonide). J. Taiwan Museum 44: 83-116. Linley J. R., A. L. Hoch and F. P. Pinheiro (1983) Biting midges (Diptera: Ceratopogonidae) and human health. J. Med. Entomol. 20(4): 347-364. Lu K. T., C.W. Kuo and C. T. Liu (2007) Inhibition Efficiency of a Mixed Solution of Bamboo Vinegar and Chitosan against Ralstonia solanacearum. Taiwan J. For. Sci. 22(3): 329-338. Mitsuhashi, S. and N. Murata (1991) Inhibitory activity of bifidobacteria. J. Jpn. Soc. Nutri. Food. Sci. 44: 365-372。 Mu, J., T. Uehara and T. Furuno (2003) Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants. J. Wood Sci. 49: 262-270. Mu, J., T. Uehara and T. Furuno (2004) Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants II: composition of moso bamboo vinegar at different collection temperature and its effects. J. Wood Sci. 50: 470-476. Mun, S. P., C. S. Ku and S. B. Park (2007) Physicochemical characterization of pyrolyzates produced from carbonization of lignocellulosic biomass in a batch-type mechanical kiln. J. Ind. Eng. Chem. 13(1): 127-132. Pandey, M. P. and C. S. Kim (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34: 29-41. Peng, C. I., K. F. Chung and H. L. Li (1998) Flora of Taiwan (second edition) V4 (Compositae). Editorial Committee of the Flora of Taiwan. Taipei, Taiwan. Putun, E., F. Ateş and A. E. Putun (2008) Catalytic pyrolysis of biomass in inert and steam atmospheres. Fuel 87: 815-824. Rahman, M. A., T. B. Imran and S. Islam (2013) Antioxidative, antimicrobial and cytotoxic effects of the phenolics of Leea indica leaf extract. Saudi J. Biol. Sci. 20: 213-225. Ryssel, H., O. Kloeters, G. Germann, Th. Schafer, G. Wiedemann and M. Oehlbauer (2009) The antimicrobial effect of acetic acid - An alternative to common local antiseptics. Burns 35(5): 695-700. Sanchez-Silva, L., D. Lopez-Gonzalez, J. Villasenor, P. Sanchez and J. L. Valerde (2012) Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bio. Tech. 109: 163-172. Sanders, E. B., A. I. Goldsmith and J. I. Seeman (2003) A model that distinguishes the pyrolysis of D-glucose, D-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation. J. Anal. Appl. Pyrolysis 66: 29-50. Shen, D. K., S. Gu and A. V. Bridgwater (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR. J. Anal. Appl. Pyrolysis 87: 199-206. Souza, E. L. D., J. C. D. Barros, M. L. D. Conceicao, N. J. G. Neto and A. C. V. D. Costa (2009) Combined application of origanum vulgare L. essential oil and acetic acid for controlling the growth of staphylococcus aureus in food. Braz. J. Microbiol. 40: 387-393. Sulaiman, O., R. J. Murphy, R. Hashim and C. S. Gritsch (2005) The inhibition of microbial growth by bamboo vinegar. J. Bamboo Rattan. 4(1) pp.71-80. Sun, W. K. C. (1967) Study of a biting midge, Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera:Ceratopogonidae). I. Description of the complete life cycle of the midge reared in the laboratory. Boil. Bull. Tunghai Univ. Taiwan, Taichung. 29: 1-10. Sun, W. K. C. (1974) Laboratory colonization of biting midges (Diptera:Ceratopogonidae). J. Med. Entomol. 11: 73-79. Wild, P. J., H. Uil, J. H. Reith, J. H. A. Kiel and H. J. Heeres (2009) Biomass valorisation by staged degasification A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass. J. Anal. Appl. Pyrolysis 85: 124-133. Yatagai, M., M. Nishimoto and K. Hori (2002) Termiticidal activity of wood vinegar, its components and their homologues. J. Wood Sci 48: 338-342. Yang, H., R. Yan, H. Chen, D. H. Lee and C. Zheng (2007a) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788. Yang, J. S., J. R. Ni, H. L. Yuan and E. Wang (2007b) Biodegradation of three different wood chips by Pseudomonas sp. PKE117. Int. Biodeter. Biodegr. 60: 90-95. 行政院農業委員會林務局森林資源保育研究成果(2012)http://ethics.forest.gov.tw/ct.asp?xItem=61305&ctNode=720&mp=1. 行政院農業委員會動植物防疫檢疫局農藥法規(1998)http://pesticide.baphiq.gov.tw/web/LawsDetailView.aspx?law_code=3&sn=33. 行政院環境保護署小黑蚊防治推廣中心(2008)http://www.bitingmidge.org.tw/. International Union for Conservation of Nature(2001)Aliens. http://www.iucn.org.
摘要: 本研究將小花蔓澤蘭(Mikania micrantha Kunth)以機械窯依升溫速率100℃/hr,加熱至600℃,並持溫1 hr製備小花蔓澤蘭醋液,再將醋液以乙醚、碳酸氫鈉溶液、硫酸溶液及氫氧化鈉溶液等藥劑,以分配法(Partition method)將小花蔓澤蘭醋液有機成分分離成乙醚萃取醋液與酸性、酚性及中性分離部,除分析其基本性質及以GC-MS鑑定其有機成分外,並探討小花蔓澤蘭醋液及各分離部應用於苔蘚防治、小黑蚊之忌避性及分析醋液對環境生態之影響,同時探討醋液及各分離部對大腸桿菌(Escherichia coli)和金黃色葡萄球菌(Staphylococcus aureus)之抑菌活性。結果顯示,小花蔓澤蘭醋液之含水率約為91%,Gardner色值約為11.2,為一紅棕色液體,比重為1.0164,pH值為5.36,有機酸含量則為2.50%,溶解焦油含量為0.78%。小花蔓澤蘭醋液有機成分以酸性物質含量最高達38.94%,中性物質次之,含量為19.56%,酚性物質及含氮物質含量分別為18.96%和18.48%。酸性物質中以醋酸含量最高,丙酸次之,其餘包含丁酸和3-甲基-丁酸(3-Methyl-butanoic acid);酚性物質以酚為主,其餘則有2-甲氧基酚(2-Methoxy-phenol)、2,6-二甲氧基酚(2,6-Dimethoxy-phenol)等;含氮物質以3-羥基吡啶(3-Pyridinol)含量最高,其次為吡啶(Pyridine)、2-甲基吡啶等;中性物質則以呋喃類及環酮類衍生物為主,其中又以2-呋喃甲醇(2-Furanmethanol)含量最高,其餘則包含2-乙醯基呋喃(2-Acetylfuran)和3-甲基-2-環戊烯-1-酮(3-Methyl-2-cyclopenten-1-one)等。 以不同濃度之小花蔓澤蘭醋液抑制苔蘚生長之試驗結果顯示,小花蔓澤蘭醋液原液和稀釋5倍者,均可有效抑制苔蘚的生長,而稀釋5倍及10倍之小花蔓澤蘭乙醚萃取醋液、酸性、酚性及中性分離部亦能有效抑制苔蘚生長,進而阻絕小黑蚊幼蟲之食物來源。在小黑蚊忌避性方面,未稀釋之小花蔓澤蘭醋液、乙醚萃取醋液、酚性及中性分離部對小黑蚊具有良好之忌避性,絕對忌避時間(Repellent time)分別為49、87、83及99 min,其中更以乙醚萃取醋液、酚性及中性分離部之忌避效果優於一般市售防蚊液。在生態試驗方面,小花蔓澤蘭醋液對水中生物之毒性為低毒性(IC50>100 mg/L),但高濃度之小花蔓澤蘭醋液(500 mg/L)仍會導致黑殼蝦及大肚魚全數死亡、水中溶氧量降低,且會影響水蘊草之生長。此外,稀釋5倍之小花蔓澤蘭醋液在1 L/m2噴灑濃度下會抑制酢漿草(Oxalis corniculata)、菁芳草(Drymaria diandra)和奧古斯丁草(Stenotaphrum secundatum)等植物的生長,且會導致大花咸豐草(Bidens pilosa)、雞屎藤(Paederia scandens)葉部黃化、皺縮,但植物仍可正常生長,且已枯萎之酢漿草、奧古斯丁草經過雨水澆灌後會冒出新芽並有新的植株長出,且稀釋5倍之小花蔓澤蘭醋液在連續噴灑3次下對土壤中蚯蚓的活動及分布並無明顯影響。 在醋液之抑菌活性方面,紙錠試驗法之結果顯示小花蔓澤蘭乙醚萃取醋液、酸性、酚性和中性分離部對大腸桿菌之抑菌圈分別為22、34、22及17 mm;對金黃色葡萄球菌之抑菌圈則分別為44、44、40及21 mm;在抑菌率方面,乙醚萃取醋液、酸性、酚性和中性分離部對大腸桿菌之抑菌率分別為25、37、24和19%;而對金黃色葡萄球菌之抑菌率則分別為49、49、44及23%。以肉湯稀釋法試驗得知乙醚萃取醋液、酸性及酚性分離部對大腸桿菌之最低抑菌濃度(Minimum inhibitory concentration, MIC)分別為稀釋500、500及250倍;對金黃色葡萄球菌之最低抑菌濃度則分別為稀釋1000、750及1500倍。整體而言,小花蔓澤蘭乙醚萃取醋液、酸性及酚性分離部皆具有良好之抑菌活性,其中又以對金黃色葡萄球菌之抑菌效果高於大腸桿菌者。
In this study, the vinegar was made from Mikania micrantha by using steel kiln heated to 600℃ under the heating rate of 100℃/hr and holding time of 1 hr. The ether-extracted vinegar, acidic, phenolic, and neutral fractions of M. micrantha vinegar were obtained by partition method using ether, NaHCO3(aq), H2SO4(aq) and NaOH(aq) as a chemical agent. The fundamental properties of M. micrantha vinegar and organic ingredients of acidic, phenolic and neutral fractions by GC-MS were examined. In addition, the application of M. micrantha vinegar and it’s partition fractions on the inhibition of moss, repellence of Forcipomyia taiwana, influence of ecological and antibacterial activity on Escherichia coli and Staphylococcus aureus were also investigated. Results indicated that the M. micrantha vinegar had a moisture content of 91%, Gardner color value of 11.2 and a red-brown color appearance, specific gravity of 1.0164, pH value of 5.36, organic acid content of 2.50%, and soluble tar content of 0.78%. Results also showed that the acidic component of 38.94% was the highest content of ether-extracted vinegar of M. micrantha, followed by the neutral component of 19.56%, and the phenolic and nitrogenous component were 18.96% and 18.48%, respectively. The main organic compound of acidic component was acetic acid, followed by propanoic acid, others including butanoic acid and 3-methyl- butanoic acid; in phenolic component was phenol, followed by 2-methoxy-phenol and 2,6-dimethoxy-phenol; in nitrogenous component was 3-pyridinol, followed by pyridine and 2-methyl-pyridine; in neutral component the main compounds were furfural and cyclopentenone derivatives, and the main compound was 2-furanmethanol, followed by 2-acetylfuran and 3-methyl- 2-cyclopenten-1-one. The result of different dilutions of M. micrantha vinegar applied to inhibit the growth of moss indicated that original and 5 times dilution of M. micrantha vinegar could effectively inhibit the growth of moss. The 5 times and 10 times dilutions of ether-extracted vinegar, acidic, phenolic, and neutral fractions of M. micrantha vinegar also had the ability to inhibit the growth of moss, i.e. breaking off the food sources and breeding of larva of F. taiwana. The results also exhibited the original vinegar, ether-extracted vinegar, phenolic, and neutral fractions of M. micrantha could effectively repellent F. taiwana, the repellent time were 49, 87, 83 and 99 min, respectively. Repellent activity of ether-extracted vinegar, phenolic, and neutral fractions of M. micrantha vinegar were better than that of commercial repellent agent on F. taiwana. In addition, the toxicity of M. micrantha vinegar on aquatic organisms showed a low toxicity(IC50>100 mg/L), but higher doses of M. micrantha vinegar(500 mg/L) not only killed Gambusia affinis fish and Neocaridina denticulate shrimp, reduced the amount of dissolved oxygen in water, but also influenced the growth of Elodea densa. Furthermore, the 5 times dilution of M. micrantha vinegar with a spray concentration of 1 L/m2 could inhibit the growth of Oxalis corniculata, Drymaria diandra and Stenotaphrum secundatum, cause the yellowing and shrinking of the leaves of Bidens pilosa and Paederia scandens, but the hurt plants such as O. corniculata and S. secundatum could re-grow after watered by rain, and the 5 times dilution of M. micrantha vinegar, even sprayed 3 times on earth didn’t impacted the activity and distribution of earthworms in soil. For the antibacterial analysis, the inhibition zone of ether-extracted vinegar, acidic, phenolic, and neutral fractions of M. micrantha vinegar on E. coli by disk diffusion method were 22, 34, 22 and 17 mm, respectively, and 44, 44, 40 and 21 mm for S. aureus, respectively; the inhibition rates on E. coli were 25, 37, 24 and 19%, and 49, 49, 44 and 23% for S. aureus, respectively. The minimum inhibitory concentration (MIC) of ether-extracted vinegar, acidic and phenolic fractions of M. micrantha vinegar on E. coli by broth dilution method were 500, 500 and 250 times and diluted 1000, 750 and 1500 times for S. aureus, respectively. Generally speaking, ether-extracted vinegar, acidic and phenolic fractions of M. micrantha vinegar posses high antibacterial activity, and the antibacterial activity on S. aureus of ether-extracted vinegar, acidic and phenolic fractions of M. micrantha vinegar were better than that on E. coli.
URI: http://hdl.handle.net/11455/66199
其他識別: U0005-1208201309575200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208201309575200
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.