Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66220
標題: 柳杉木醋液有機成分之分離及其木材防腐與促進種子發芽之應用
The separation of organic components from Cryptomeria japonica wood vinegar and its application on the against wood decay and promoting germination of seed
作者: Chuang, Chun-Li
莊純琍
關鍵字: Wood vinegars
木醋液
Partition method
Antifungal activity against wood decay fungi
Germination of seed
Growth of radical and hypocotyl
分配法
抗木材腐朽菌活性
種子發芽
胚根及胚軸生長
出版社: 森林學系所
引用: 林裕仁、黃國雄、王瀛生 ( 2003 ) 淺談竹炭之生產與利用。林業研究專訊 10 ( 3 ): 23- 27。 吳季玲、張上鎮 (2010) TGA與FTIR分析腐朽木材之化學結構變化。中華林學季刊 43(1): 147-155。 張惠婷、張上鎮、吳季玲 (2000) 抽出成分對木材耐腐朽性的影響及腐朽後木材的化學結構變化。林產工業 19 (4): 457-466。 偉丕 (2003) 溶劑手冊。中國石化出版社 pp.50-52;153-155。 郭孚燿 (2003) 國產優良品牌番茄生產管理技術作業標準。國產優良品牌蔬果生 產管理技術作業標準。行政院農業委員會出版。pp. 239-252。 陳莉鵑、盧崑宗、劉正字 (2007) 竹醋液對青梗白菜生長之促進作用。台灣林業科學 22(2): 149-157。 上原徹、堀尾義明、古野毅、城代進 ( 1993 ) 植物種子に対する木酢液の発芽, 成長促進作用。木材學會誌 39(12): 1415-1420。 池上文雄、関根利一、藤井祐一 (1998) 木酢液の抗真菌活性成分。薬学雑誌 118(1):27-30。 谷田貝光克、雲林院源治 ( 1987 ) 炭化副產物に関する研究(第4報) 木酢液の植物種子に対する發芽、生長促進作用。木材學會誌 33(6):521-529。 谷田貝光克、雲林院源治 ( 1988 ) 炭化副產物に関する研究(第4報) 木酢液の成分。木材學會誌 34(2): 184-188。 谷田貝光克、雲林院源治 ( 1989a ) 炭化副產物に関する研究(第5報) 木酢液成分およびその関連化合物の植物種子に対する発芽、生長制御作用— 酸および中性物質について。木材學會誌 35(6): 564-571。 谷田貝光克、雲林院源治 ( 1989b ) 炭化副產物に関する研究(第6報) 木酢液成分およびその関連化合物の植物種子に対する発芽、生長制御作用— アルコールおよびフェノール類について。木材學會誌 35 (11): 1021-1028。 谷田貝光克、山家義人、雲林院源治 (1991) 簡易炭化法と炭化生産物の新しい利用わかりやすい林業研究解說シリーズ。東京。pp. 55-60。 杉浦銀治 ( 1995 ) 木酢液の不思議。全國社團法人林業改良普及學會。東京。pp. 130-164。 Akakabe, Y., Y. Tamura, S. Iwamoto, M. Takabayashi and T. Nyuugaku (2006) Volatile organic compounds with characteristic odor in bamboo vinegar. Biosci., Biotechnol. Biochem. 70: 2797-2799. Alen, R., E. Kuoppala and P. Oesch (1996) Formation of the main degradation compound groups from wood and its components during pyrolysis. J. Anal. Appl. Pyrolysis 36: 137-148. Alfredsen, G., T. K. Bader, J. Dibdiakova, T. Filbakk, S. Bollmus and K. Hofstetter (2012) Thermogravimetric analysis for wood decay characterization. Eur. J. Wood Prod. 70: 527-530. Baimark, Y. and N. Niamsa (2009) Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets. Biomass Bioenerg. 33: 994-998. Byrne, C. E. and D. C. Nagle (1997) Carbonization of wood for advanced materials applications. Carbon 35: 259-266. Demirbaş, A. (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Mgmt. 41: 633-646. Demirbaş, A. (2005) Pyrolysis of ground beech wood in irregular heating rate conditions. J. Anal. Appl. Pyrolysis 73: 39-43. Demirbaş, A. (2006) Effect of temperature on pyrolysis products from four nut shells. J. Anal. Appl. Pyrolysis 76: 285-289. Duman, G., C. Okutucu., S. Ucar., R. Stahl and J. Yanik (2011) The slow and fast pyrolysis of cherry seed. Bioresour. Technol. 102: 1869-1878. Gao, M., C. Sun and K. Zhu (2004) Thermal degradation of wood treated with guanidine compounds in air: Flammability study. J. Therm. Anal. Calorim. 75: 221-232. Haykiri-Acma, H. (2006) The role of particle size in the non-isothermal pyrolysis of hazelnut shell. J. Anal. Appl. Pyrolysis 75(2): 211-2166. Horne, P. A. and T. W. Paul (1996) Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75(9): 1051-1059. Hwang, Y. H., Y. I. Matsushita, K. Sugamoto and T. Marsui (2005) Antimicrobial effect of the wood vinegar from Cryptomeria japonica sapwood on plant pathogenic microorganisms. J. Microbiol. Biotechnol. 15(5): 1106-1109. Jeguirim, M. and G. Trouve (2009) Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour. Technol. 100: 4026-4031. Kartal, S. N., Y. Imamura, F. Tsuchiya and K. Ohsato (2004) Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production. Bioresour. Technol. 95: 41–47. Kucuk, M. M. and A. Demirbaş (1997) Biomass conversion processes. Energy Convers. Manage. 38(2): 151-165. Laresgoiti, M. F., B. M. Caballero, I. de Marco, A. Torres., M. A. Cabrero and M. J. Chomon (2004) Characterization of the liquid products obtained in tyre pyrolysis. J. Anal. Appl. Pyrolysis 71: 917-934. Lee, S. H., P. S. H’ng, A. N. Lee, A. S. Sajap, B. T. Tey and U. Salmiah (2010) Production of pyroligneous acid from lignocellulosic biomass and their effectiveness against biological attacks. J. Appl. Sci. 10(20): 2440-2446. Lin, Y. C., G. A. Tompsett, P. R. Westmoreland and G.W. Huber (2009) Kinetics and mechanism of cellulose pyrolysis. J. Phys. Chem. C 113: 20097-20107. Lu, K. T., C. W. Kuo and C. T. Liu (2007) Inhibition efficiency of a mixed solution of bamboo vinegar and chitosan against Ralstonia solanacearum. Taiwan J. For. Sci. 22(3): 329-338 Mansoor, H and R. M. Ali (1992) Antifungal activity of pyrolytic oils of tar from rubberwood (Hevea brasiliensis) pyrolysis. J. Trop. For. Sci. 4: 294-302. Mohan, D., C. U. Jr. Pittman and P. H. Steele (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energ Fuel 20: 848-889. Mohan D., J. Shi, D. D. Nicholas, C. U. Jr. Pittman, P. H. Steele and J. E. Cooper (2008) Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis. Chemosphere 71: 456-465. Mohebby, B. (2005) Attenuated total reflection infrared spectroscopy of white-rot decayed beech wood. Int. Biodeterior. Biodegrad. 55: 247-251. Mu, J., T. Uehara and T. Furuno (2003) Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants. J. Wood Sci. 49: 262-279. Mu, J., T. Uehara and T. Furuno (2004) Effect of wood vinegars on germination and radicle growth of seed plants II: composition of moso bamboo vinegar at different collection temperature and its effects. J. Wood Sci. 50: 470-476. Mu, J., Z. M. Yu, W. Q. Wu and Q. L. Wu (2006) Preliminary study of application effect of bamboo vinegar on vegetable growth. For. Stud. China 8 (3): 43-47. Mun, S. P., C. S. Ku and S. B. Park (2007) Physicochemical characterization of pyrolyzates produced from carbonization of lignocellulosic biomass in a batch-type mechanical kiln. J. Ind. Eng. Chem. 13(1): 127-132. Mun, S. P. and C. S. Ku (2010) Pyrolysis GC-MS analysis of tars formed during the aging of wood and bamboo crude vinegars. J. Wood Sci. 56: 47-52. Nakai, T., S. N. Kartal., T. Hata. and Y. Imamura (2007) Chemical characterization of pyrolysis liquids of wood-based composites and evaluation of their bio-efficiency. Build. Environ. 42: 1236-1241. Pandey, K. K. and K. S. Theagarajan (1997) Analysis of wood surfaces and ground wood by diffuse reflectance (DRIFT) and photoacoustic (PAS) Fourier transform infrared spectroscopic techniques. Holz Roh Werkst 55: 383-390. Pandey, K. K. and A. J. Pitman (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 52: 151-160. Pandey, K. K. and H. C. Nagveni (2007) Rapid characterisation of brown and white rot degraded chir pine and rubberwood by FTIR spectroscopy. Holz Roh Werkst 65: 477-481. Pandey, M. P. and C. S. Kim (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 34: 29-41. Park, H. J., H. S. Hyeon, Y. K. Park, C. K. Ryu, D. J. Suh, Y. W. Suh, J. H. Yim and S. S. Kim (2010) Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresour. Technol. 101: S91-S96. Popescu, C. M., A. Manoliu, P. Gradinariu and C. Vasile (2010) Thermogravimetric analysis of fungus-degraded lime wood. Carbohydr. Polym. 80: 78-83. Roy, C., A. C. Carlos and H. Pakdel (2001) Production of monomeric phenols by thermochemical conversion of boiomass: a review. Bioresour. Technol. 79(3): 277-299. Schwarze, F. W. M. R. (2007) Wood decay under the microscope. Fungal Biol. Rev. 21:133-170. Seo, M. J., M. J. Kim, H. H. Lee, S. R. Kim, B. W. Kang, J. U. Park, E. J. Rhu, Y. H. Choi and Y. K. Jeong (2010) Initial acidic pH is critical for mycelial cultures and functional exopolysaccharide production of an edible mushroom, Laetiporus sulphureus var. miniatus JM 27. J. Microbiol. 48(6): 881-884. Shen, D. K., S. Gua and A. V. Bridgwater (2010) Study on the pyrolytic behaviour of xylan-based hemicellulose using TG–FTIR and Py–GC–FTIR. J. Anal. Appl. Pyrolysis 87: 199-206. Sjostrom, E. (1993) Wood chemistry: fundamentals and applications 2nd edition. Academic press, New York. pp. 63-68. Sulaiman, O., R. J. Murphy, R. Hashim and C. S. Gritsch (2005) The inhibition of microbial growth by bamboo vinegar. J. Bamboo Rattan. 4(1): 71-80. Tsai, W. T., H. H. Mi, Y. M. Chang, S. Y. Yang and J. H. Chang (2007) Polycyclic aromatic hydrocarbons (PAHs) in bio-crudes from induction-heating pyrolysis of biomass wastes. Bioresour. Technol. 98: 1133-1137. Velmurugan, N., S. S. Han and Y. S. Lee (2009) Antifungal activity of neutralized wood vinegar with water extracts of Pinus densiflora and Quercus serrata saw dusts. Int. J. Environ. Res. 3(2): 167-176. Voda, K., B. Boh and M. Vrtacnik (2004) A quantitative structure–antifungal activity relationship study of oxygenated aromatic essential oil compounds using data structuring and PLS regression analysis. J. Mol. Model. 10: 76-84. Yang, H., R. Yan, H. Chen, D. H. Lee and C. Zheng (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788. Yatagai, M., M. Nishimoto and K. Hori (2002) Termiticidal activity of wood vinegar, its components and their homologues. J. Wood Sci. 48: 338-342.
摘要: 本研究將台灣產與日本產柳杉以機械窯依升溫速率100℃/hr,加熱至500℃,並持溫1hr製造粗木醋液,再將粗木醋液靜置6個月(台灣產柳杉)與3個月(日本產柳杉)所得之木醋液,以乙醚、碳酸氫鈉溶液、硫酸溶液及氫氧化鈉溶液等藥劑,以分配法(Partition method)將木醋液有機成分分離成酸性、酚性及中性物質,除分析其基本性質及以GC-MS鑑定其有機成分外,並探討各成分對木材防腐性能及促進植物生長之效能。結果顯示,台灣產與日本產柳杉木醋液之含水率介於85.0-88.4 %,Gardner色值約11.0,比重介於1.0320-1.0369, pH值約2.4,有機酸含量介於4.66-5.28%,溶解焦油含量則介於2.72-3.00%。台灣產與日本產柳杉木醋液各分離部,均以酚性物質含量最高,酸性物質次之,而以中性物質最少。台灣產與日本產柳杉木醋液的有機成分又以醋酸含量最多;酸性物質中均以醋酸含量最高,丙酸及丁酸次之;酚性物質均以酚含量最高,其他尚有2-甲氧基酚、3-甲基酚等;中性物質之主要成分為呋喃類及環戊烯酮類衍生物,其中台灣產者以2-甲氧基四氫呋喃(2-Methoxytetrahydrofuran)與2-甲基-2-環戊烯-1-酮(2-Methyl- 2-cyclopenten-1-one)為主,日本產者則以2-呋喃甲醇(2-Furanmethanol)與糠醛(Furfural )為主。 採用固態平板試驗法評估抗木材腐朽菌活性包括白腐菌Lenzites betulina與Trametes versicolor及褐腐菌Laetiporus sulphureus與Gloeophyllum trabeum,並進行木塊耐腐朽試驗,結果顯示,使用濃度800 μg/mL時,除了白腐菌L.betulina低於乙醚萃取木醋液者外,酚性物質均具有最高抑菌指數。由IC50結果得知,酚性物質約為濃度515-622 μg/mL具有優良之抗木材腐朽菌活性。經由木塊耐腐朽試驗結果顯示,以1%之中性物質處理材經白腐菌L. betulina腐朽後之重量損失率23.6%遠低於無藥劑處理材之33.2%;而1.0%之酚性物質處理材經褐腐菌L. sulphureus腐朽後之重量損失率33.0%低於無藥劑處理材之44.9%。 在促進種子發芽及生長方面,稀釋10及102之乙醚萃取木醋液、酸性物質、酚性物質及中性物質均會完全抑制皺葉萵苣、無絲小白菜以及半結球白菜種子之發芽。而稀釋105倍以上者,則能促進上述三種種子發芽率,尤以稀釋106及107倍者最佳。又由試驗結果得知,酚性物質具有抑制種子發芽作用,但發芽後之胚根及胚軸生長並不會受到影響;整體而言,低濃度(稀釋105倍以上者)之乙醚萃取木醋液、酸性物質、中性物質均可以促進種子發芽、胚根及胚軸生長。
In this study, the crude wood vinegars were made from Cryptomeria japonica produced in Taiwan and Japan, respectively, by using steel kiln heated to 500℃ under the heating rate of 100℃/hr and holding time of 1 hr. The wood vinegars were obtained by the crude wood vinegar standing for 6 months for Taiwan C. japonica product and for 3 months for Japan C. japonica product. And then the acidic, phenolic and neutral fractions of organic compounds of wood vinegars were obtained by partition method using ether, NaHCO3(aq), H2SO4(aq) and NaOH(aq) as a chemical agent. The fundamental properties of wood vinegars and organic ingredients of acidic compounds, phenolic compounds and neutral compounds as well as the application of organic compounds on the against wood decay and growth of germination of seed were examinated. Results indicated that the wood vinegars from C. japonica produced in Taiwan and Japan had a moisture content of 85.0-88.4%, gardner color value of 11.0, specific gravity of 1.0320-1.0369, pH of 2.4, organic acid content of 4.66-5.28% and soluble tar content of 2.72-3.00%. Results also showed that the phenolic fraction was the highest content of ether-extracted wood vinegars, followed by the acidic fraction and the neutral fraction was the least amounts for wood vinegar produced in Taiwan and Japan. The main organic compound of both wood vinegars was acetic acid. In addition, the main compound in acidic fractions was acetic acid, followed by propanoic acid and butanoic acid; in phenolic fraction was phenol, followed by 2-methoxy-phenol and 3-methy-lphenol; in the neutral fractions the main neutral fractions was furfural and cyclopentenone derivatives for both wood vinegars, while 2-methoxytetrahydrofuran and 2-methyl- 2-cyclopenten-1-one were the main ones for wood vinegar produced in Taiwan and 2-furanmethanol and furfural were the major compounds for wood vinegar produced in Japan. According to agar plate assay, the antifungal activity of organic compounds against four wood decay fungi such as white-rot fungus Lenzites betulina and Trametes versicolor and brown-rot fungus Laetiporus sulphureus and Gloeophyllum trabeum demonstrated that the phenolic compounds had the highest antifungal index against three wood decay fungi, except the white-rot fungus Lenzites betulina which could be inhibited effectively by ether-extracted wood vinegar at concentration 800 μg/mL. The phenolic compounds had IC50 value of 515-622 μg/mL and possessed excellent antifungal activity against wood decay fungi. According to wood block test of 90 days exposure to white-rot fungus L. betulina and brown-rot fungus L. sulphureus showed that the weight loss of 1.0% neutral compounds treated wood against white-rot fungus L. betulina were 23.6% and which significantly lower than that untreated wood of 33.2%. Furthermore, the weight loss of 1.0% phenolic compounds treated wood against brown-rot fungus L. sulphureus were 30.0% and which significantly lower than that untreated wood of 44.9%. Ether-extracted wood vinegars, acidic compounds, phenolic compounds and neutral compounds which were diluted 10 and 102 times could inhibit the germination of Lactuca sativa L., Brassica chinensis Linn and Brassica Campestris spp. seeds. However the dilutions of more than 105 could accelerate germination of the three seeds mentioned above, especially for the dilutions of 106 and 107 times. The results also founded that the phenolic compounds inhibited the seeds germination, but which did not affect the growth of radical and hypocotyl. Generally speaking, the low concentration(dilutions more than 105)of ether-extracted wood vinegars, acidic compounds, phenolic compounds and neutral compounds could increase the germination of seeds and growth of radical and hypocotyl.
URI: http://hdl.handle.net/11455/66220
其他識別: U0005-3107201215112600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3107201215112600
Appears in Collections:森林學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.