Please use this identifier to cite or link to this item:
標題: 假性狂犬病毒VHS蛋白質之RNA酵素活性以及轉譯調節之功能分析
Characterization of RNase activity and translation regulation of Pseudorabies virus VHS protein
作者: 蔡佩芸
Tsai, Pei-Yun
關鍵字: 假性狂犬病
出版社: 微生物暨公共衛生學研究所
引用: Abmayr, S. M., J. L. Workman, et al. (1988). "The pseudorabies immediate early protein stimulates in vitro transcription by facilitating TFIID: promoter interactions." Genes Dev 2(5): 542-553. Ahlers, S. E. and L. T. Feldman (1987). "Immediate-early protein of pseudorabies virus is not continuously required to reinitiate transcription of induced genes." J Virol 61(4): 1258-1260. Babic, N., T. C. Mettenleiter, et al. (1994). "Propagation of pseudorabies virus in the nervous system of the mouse after intranasal inoculation." Virology 204(2): 616-625. Baskerville, A. (1973). "The histopathology of experimental pneumonia in pigs produced by Aujeszky''s disease virus." Res Vet Sci 14(2): 223-228. Batterson, W. and B. Roizman (1983). "Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes." J Virol 46(2): 371-377. Becker, Y., E. Tavor, et al. (1993). "Effect of herpes simplex virus type-1 UL41 gene on the stability of mRNA from the cellular genes: beta-actin, fibronectin, glucose transporter-1, and docking protein, and on virus intraperitoneal pathogenicity to newborn mice." Virus Genes 7(2): 133-143. Ben-Porat, T., F. J. Rixon, et al. (1979). "Analysis of the structure of the genome of pseudorabies virus." Virology 95(2): 285-294. Beran, G. W., E. B. Davies, et al. (1980). "Persistence of pseudorabies virus in infected swine." J Am Vet Med Assoc 176(10 Pt 1): 998-1000. Berthomme, H., B. Jacquemont, et al. (1993). "The pseudorabies virus host-shutoff homolog gene: nucleotide sequence and comparison with alphaherpesvirus protein counterparts." Virology 193(2): 1028-1032. Bhagwat, M., D. Meara, et al. (1997). "Identification of residues of T4 RNase H required for catalysis and DNA binding." J Biol Chem 272(45): 28531-28538. Ceska, T. A. and J. R. Sayers (1998). "Structure-specific DNA cleavage by 5'' nucleases." Trends Biochem Sci 23(9): 331-336. Chang, L. Y. and V. L. Van Santen (1992). "Immediate-early, early, and late RNAs in bovine herpesvirus-4-infected cells." Virology 191(2): 909-920. Cheung, A. K. (1989). "Detection of pseudorabies virus transcripts in trigeminal ganglia of latently infected swine." J Virol 63(7): 2908-2913. Cheung, A. K. (1989). "DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus." Nucleic Acids Res 17(12): 4637-4646. Cheung, A. K., C. Vlcek, et al. (1990). "Update and comparison of the immediate-early gene DNA sequences of two pseudorabies virus isolates." Virus Genes 4(3): 261-265. Cheung, P., B. W. Banfield, et al. (1991). "Brefeldin A arrests the maturation and egress of herpes simplex virus particles during infection." J Virol 65(4): 1893-1904. Chong, Y. C. and U. Forster (1987). "Relative rates of Aujeszky''s disease virus attenuation, as assessed in mice." Vet Microbiol 15(3): 249-256. Coldwell, M. J., S. A. Mitchell, et al. (2000). "Initiation of Apaf-1 translation by internal ribosome entry." Oncogene 19(7): 899-905. Davis, G. D., C. Elisee, et al. (1999). "New fusion protein systems designed to give soluble expression in Escherichia coli." Biotechnol Bioeng 65(4): 382-388. Davison, A. J. and J. E. Scott (1986). "The complete DNA sequence of varicella-zoster virus." J Gen Virol 67 ( Pt 9): 1759-1816. de Wind, N., F. Wagenaar, et al. (1992). "The pseudorabies virus homology of the herpes simplex virus UL21 gene product is a capsid protein which is involved in capsid maturation." J Virol 66(12): 7096-7103. Desloges, N., M. Rahaus, et al. (2005). "The varicella-zoster virus-mediated delayed host shutoff: open reading frame 17 has no major function, whereas immediate-early 63 protein represses heterologous gene expression." Microbes Infect 7(15): 1519-1529. Doepker, R. C., W. L. Hsu, et al. (2004). "Herpes simplex virus virion host shutoff protein is stimulated by translation initiation factors eIF4B and eIF4H." J Virol 78(9): 4684-4699. Doherty, A. J., L. C. Serpell, et al. (1996). "The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA." Nucleic Acids Res 24(13): 2488-2497. Efstathiou, S., S. Kemp, et al. (1989). "The role of herpes simplex virus type 1 thymidine kinase in pathogenesis." J Gen Virol 70 ( Pt 4): 869-879. Elgadi, M. M., C. E. Hayes, et al. (1999). "The herpes simplex virus vhs protein induces endoribonucleolytic cleavage of target RNAs in cell extracts." J Virol 73(9): 7153-7164. Elgadi, M. M. and J. R. Smiley (1999). "Picornavirus internal ribosome entry site elements target RNA cleavage events induced by the herpes simplex virus virion host shutoff protein." J Virol 73(11): 9222-9231. Esclatine, A., B. Taddeo, et al. (2004). "The UL41 protein of herpes simplex virus mediates selective stabilization or degradation of cellular mRNAs." Proc Natl Acad Sci U S A 101(52): 18165-18170. Everett, R. D. (1988). "Promoter sequence and cell type can dramatically affect the efficiency of transcriptional activation induced by herpes simplex virus type 1 and its immediate-early gene products Vmw175 and Vmw110." J Mol Biol 203(3): 739-751. Everly, D. N., Jr., P. Feng, et al. (2002). "mRNA degradation by the virion host shutoff (Vhs) protein of herpes simplex virus: genetic and biochemical evidence that Vhs is a nuclease." J Virol 76(17): 8560-8571. Everly, D. N., Jr. and G. S. Read (1997). "Mutational analysis of the virion host shutoff gene (UL41) of herpes simplex virus (HSV): characterization of HSV type 1 (HSV-1)/HSV-2 chimeras." J Virol 71(10): 7157-7166. Everly, D. N., Jr. and G. S. Read (1999). "Site-directed mutagenesis of the virion host shutoff gene (UL41) of herpes simplex virus (HSV): analysis of functional differences between HSV type 1 (HSV-1) and HSV-2 alleles." J Virol 73(11): 9117-9129. Feldman, L., F. J. Rixon, et al. (1979). "Transcription of the genome of pseudorabies virus (A herpesvirus) is strictly controlled." Virology 97(2): 316-327. Feng, P., D. N. Everly, Jr., et al. (2001). "mRNA decay during herpesvirus infections: interaction between a putative viral nuclease and a cellular translation factor." J Virol 75(21): 10272-10280. Feng, P., D. N. Everly, Jr., et al. (2005). "mRNA decay during herpes simplex virus (HSV) infections: protein-protein interactions involving the HSV virion host shutoff protein and translation factors eIF4H and eIF4A." J Virol 79(15): 9651-9664. Fenwick, M. L. and J. Clark (1982). "Early and delayed shut-off of host protein synthesis in cells infected with herpes simplex virus." J Gen Virol 61 (Pt l): 121-125. Fenwick, M. L. and R. D. Everett (1990). "Transfer of UL41, the gene controlling virion-associated host cell shutoff, between different strains of herpes simplex virus." J Gen Virol 71 ( Pt 2): 411-418. Fenwick, M. L. and M. M. McMenamin (1984). "Early virion-associated suppression of cellular protein synthesis by herpes simplex virus is accompanied by inactivation of mRNA." J Gen Virol 65 ( Pt 7): 1225-1228. Fenwick, M. L. and M. J. Walker (1978). "Suppression of the synthesis of cellular macromolecules by herpes simplex virus." J Gen Virol 41(1): 37-51. Frame, M. C., D. J. McGeoch, et al. (1986). "The 10K virion phosphoprotein encoded by gene US9 from herpes simplex virus type 1." Virology 150(2): 321-332. Fuchs, W., C. Ehrlich, et al. (2000). "Characterization of the replication origin (Ori(S)) and adjoining parts of the inverted repeat sequences of the pseudorabies virus genome." J Gen Virol 81(Pt 6): 1539-1543. Fuller, A. O., R. E. Santos, et al. (1989). "Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration." J Virol 63(8): 3435-3443. Geiss, B. J., T. J. Smith, et al. (2000). "Disruption of virion host shutoff activity improves the immunogenicity and protective capacity of a replication-incompetent herpes simplex virus type 1 vaccine strain." J Virol 74(23): 11137-11144. Gyllensten, U. B. and H. A. Erlich (1988). "Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus." Proc Natl Acad Sci U S A 85(20): 7652-7656. Hampl, H., T. Ben-Porat, et al. (1984). "Characterization of the envelope proteins of pseudorabies virus." J Virol 52(2): 583-590. Han, B. and J. T. Zhang (2002). "Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story." Mol Cell Biol 22(21): 7372-7384. Heckman, K. L. and L. R. Pease (2007). "Gene splicing and mutagenesis by PCR-driven overlap extension." NATURE PROTOCOLS 2(4): 9. Henis-Korenblit, S., N. L. Strumpf, et al. (2000). "A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation." Mol Cell Biol 20(2): 496-506. Holcik, M. and N. Sonenberg (2005). "Translational control in stress and apoptosis." Nat Rev Mol Cell Biol 6(4): 318-327. Holcik, M., N. Sonenberg, et al. (2000). "Internal ribosome initiation of translation and the control of cell death." Trends Genet 16(10): 469-473. Honess, R. W. (1984). "Herpes simplex and ''the herpes complex'': diverse observations and a unifying hypothesis. The eighth Fleming lecture." J Gen Virol 65 ( Pt 12): 2077-2107. Honess, R. W. and B. Roizman (1974). "Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins." J Virol 14(1): 8-19. Hosfield, D. J., C. D. Mol, et al. (1998). "Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity." Cell 95(1): 135-146. Hsu, W. L., H. A. Saffran, et al. (2005). "Herpes simplex virus infection stabilizes cellular IEX-1 mRNA." J Virol 79(7): 4090-4098. Hwang, K. Y., K. Baek, et al. (1998). "The crystal structure of flap endonuclease-1 from Methanococcus jannaschii." Nat Struct Biol 5(8): 707-713. Ihara, S., L. Feldman, et al. (1983). "Characterization of the immediate-early functions of pseudorabies virus." Virology 131(2): 437-454. Jones, F. E., C. A. Smibert, et al. (1995). "Mutational analysis of the herpes simplex virus virion host shutoff protein: evidence that vhs functions in the absence of other viral proteins." J Virol 69(8): 4863-4871. Karr, B. M. and G. S. Read (1999). "The virion host shutoff function of herpes simplex virus degrades the 5'' end of a target mRNA before the 3'' end." Virology 264(1): 195-204. Kevil, C. G., L. Walsh, et al. (1997). "An improved, rapid Northern protocol." Biochem Biophys Res Commun 238(2): 277-279. Kieft, J. S. (2008). "Viral IRES RNA structures and ribosome interactions." Trends Biochem Sci 33(6): 274-283. Kit, S., M. Kit, et al. (1985). "Attenuated properties of thymidine kinase-negative deletion mutant of pseudorabies virus." Am J Vet Res 46(6): 1359-1367. Kit, S., H. Qavi, et al. (1985). "Thymidine kinase-negative bovine herpesvirus type 1 mutant is stable and highly attenuated in calves." Arch Virol 86(1-2): 63-83. Klupp, B. G., C. J. Hengartner, et al. (2004). "Complete, annotated sequence of the pseudorabies virus genome." J Virol 78(1): 424-440. Klupp, B. G. and T. C. Mettenleiter (1991). "Sequence and expression of the glycoprotein gH gene of pseudorabies virus." Virology 182(2): 732-741. Knez, J., P. T. Bilan, et al. (2003). "A single amino acid substitution in herpes simplex virus type 1 VP16 inhibits binding to the virion host shutoff protein and is incompatible with virus growth." J Virol 77(5): 2892-2902. Kost, T. A., E. V. Jones, et al. (1989). "Biological evaluation of glycoproteins mapping to two distinct mRNAs within the BamHI fragment 7 of pseudorabies virus: expression of the coding regions by vaccinia virus." Virology 171(2): 365-376. Krikorian, C. R. and G. S. Read (1991). "In vitro mRNA degradation system to study the virion host shutoff function of herpes simplex virus." J Virol 65(1): 112-122. Kwong, A. D. and N. Frenkel (1987). "Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs." Proc Natl Acad Sci U S A 84(7): 1926-1930. Kwong, A. D. and N. Frenkel (1989). "The herpes simplex virus virion host shutoff function." J Virol 63(11): 4834-4839. Kwong, A. D., J. A. Kruper, et al. (1988). "Herpes simplex virus virion host shutoff function." J Virol 62(3): 912-921. Lam, Q., C. A. Smibert, et al. (1996). "Herpes simplex virus VP16 rescues viral mRNA from destruction by the virion host shutoff function." EMBO J 15(10): 2575-2581. Liang, L. and B. Roizman (2006). "Herpes simplex virus 1 precludes replenishment of the short-lived receptor of tumor necrosis factor alpha by virion host shutoff-dependent degradation of its mRNA." J Virol 80(15): 7756-7759. Lin, H. W., Y. Y. Chang, et al. (2004). "Functional analysis of virion host shutoff protein of pseudorabies virus." Virology 324(2): 412-418. Lin, H. W., W. L. Hsu, et al. (2010). "Role of the UL41 protein of pseudorabies virus in host shutoff, pathogenesis and induction of TNF-alpha expression." J Vet Med Sci 72(9): 1179-1187. Lokensgard, J. R., D. G. Thawley, et al. (1990). "Pseudorabies virus latency: restricted transcription." Arch Virol 110(1-2): 129-136. Lu, P., F. E. Jones, et al. (2001). "Herpes simplex virus virion host shutoff protein requires a mammalian factor for efficient in vitro endoribonuclease activity." J Virol 75(3): 1172-1185. Lu, P., H. A. Saffran, et al. (2001). "The vhs1 mutant form of herpes simplex virus virion host shutoff protein retains significant internal ribosome entry site-directed RNA cleavage activity." J Virol 75(2): 1072-1076. Macejak, D. G. and P. Sarnow (1991). "Internal initiation of translation mediated by the 5'' leader of a cellular mRNA." Nature 353(6339): 90-94. Martin, K. J., J. W. Lillie, et al. (1990). "Transcriptional activation by the pseudorabies virus immediate early protein." Genes Dev 4(12B): 2376-2382. matthews (1982). "classification and nomenclature of viruses fourth report of the international committee on taxonomy of viruses." intervirology 17: 1-199. McGeoch, D. J. and S. Cook (1994). "Molecular phylogeny of the alphaherpesvirinae subfamily and a proposed evolutionary timescale." J Mol Biol 238(1): 9-22. McGeoch, D. J., M. A. Dalrymple, et al. (1988). "The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1." J Gen Virol 69 ( Pt 7): 1531-1574. McGregor, S., B. C. Easterday, et al. (1985). "Vaccination of swine with thymidine kinase-deficient mutants of pseudorabies virus." Am J Vet Res 46(7): 1494-1497. McLean, G., F. Rixon, et al. (1990). "Identification and characterization of the virion protein products of herpes simplex virus type 1 gene UL47." J Gen Virol 71 ( Pt 12): 2953-2960. Mettenleiter, T. C. (2000). "Aujeszky''s disease (pseudorabies) virus: the virus and molecular pathogenesis - State of the art, June 1999." Veterinary Research 31: 99-115. Mettenleiter, T. C., A. Saalmuller, et al. (1993). "Pseudorabies virus protein homologous to herpes simplex virus type 1 ICP18.5 is necessary for capsid maturation." J Virol 67(3): 1236-1245. Mettenleiter, T. C., C. Schreurs, et al. (1988). "Role of glycoprotein gIII of pseudorabies virus in virulence." J Virol 62(8): 2712-2717. Moormann, R. J., T. de Rover, et al. (1990). "Inactivation of the thymidine kinase gene of a gI deletion mutant of pseudorabies virus generates a safe but still highly immunogenic vaccine strain." J Gen Virol 71 ( Pt 7): 1591-1595. Mueser, T. C., N. G. Nossal, et al. (1996). "Structure of bacteriophage T4 RNase H, a 5'' to 3'' RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins." Cell 85(7): 1101-1112. Nable, R. O., R. L. Houtz, et al. (1988). "Early Inhibition of Photosynthesis during Development of Mn Toxicity in Tobacco." Plant Physiol 86(4): 1136-1142. Narita, M., K. Kimura, et al. (1998). "Immunohistochemical demonstration of spread of Aujeszky''s disease virus to the porcine central nervous system after intestinal inoculation." J Comp Pathol 118(4): 329-336. Newcomb, W. W., F. L. Homa, et al. (1999). "Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins." J Virol 73(5): 4239-4250. Oroskar, A. A. and G. S. Read (1987). "A mutant of herpes simplex virus type 1 exhibits increased stability of immediate-early (alpha) mRNAs." J Virol 61(2): 604-606. Oroskar, A. A. and G. S. Read (1989). "Control of mRNA stability by the virion host shutoff function of herpes simplex virus." J Virol 63(5): 1897-1906. Page, H. G. and G. S. Read (2010). "The virion host shutoff endonuclease (UL41) of herpes simplex virus interacts with the cellular cap-binding complex eIF4F." J Virol 84(13): 6886-6890. Pak, A. S., D. N. Everly, et al. (1995). "The virion host shutoff protein of herpes simplex virus inhibits reporter gene expression in the absence of other viral gene products." Virology 211(2): 491-506. Parkinson, J. and R. D. Everett (2000). "Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins." J Virol 74(21): 10006-10017. Pasieka, T. J., B. Lu, et al. (2008). "Herpes simplex virus virion host shutoff attenuates establishment of the antiviral state." J Virol 82(11): 5527-5535. Pause, A., N. Methot, et al. (1994). "Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation." EMBO J 13(5): 1205-1215. Pelletier, J. and N. Sonenberg (1988). "Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA." Nature 334(6180): 320-325. Perez-Parada, J., H. A. Saffran, et al. (2004). "RNA degradation induced by the herpes simplex virus vhs protein proceeds 5'' to 3'' in vitro." J Virol 78(23): 13391-13394. Petrovskis, E. A., J. G. Timmins, et al. (1986). "DNA sequence of the gene for pseudorabies virus gp50, a glycoprotein without N-linked glycosylation." J Virol 59(2): 216-223. Petrovskis, E. A., J. G. Timmins, et al. (1986). "Use of lambda gt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins." J Virol 60(1): 185-193. Pierrat, O. A., V. Mikitova, et al. (2007). "Control of protein translation by phosphorylation of the mRNA 5''-cap-binding complex." Biochem Soc Trans 35(Pt 6): 1634-1637. Platt, K. B., C. J. Mare, et al. (1980). "Differentiation of vaccine strains and field isolates of pseudorabies (Aujeszky''s disease) virus: trypsin sensitivity and mouse virulence markers." Arch Virol 63(2): 107-114. Pomeranz, L. E., A. E. Reynolds, et al. (2005). "Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine." Microbiol Mol Biol Rev 69(3): 462-500. Preston, C. M. (2000). "Repression of viral transcription during herpes simplex virus latency." J Gen Virol 81(Pt 1): 1-19. Priola, S. A. and J. G. Stevens (1991). "The 5'' and 3'' limits of transcription in the pseudorabies virus latency associated transcription unit." Virology 182(2): 852-856. Rea, T. J., J. G. Timmins, et al. (1985). "Mapping and sequence of the gene for the pseudorabies virus glycoprotein which accumulates in the medium of infected cells." J Virol 54(1): 21-29. Read, G. S. and N. Frenkel (1983). "Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of alpha (immediate early) viral polypeptides." J Virol 46(2): 498-512. Read, G. S., B. M. Karr, et al. (1993). "Isolation of a herpes simplex virus type 1 mutant with a deletion in the virion host shutoff gene and identification of multiple forms of the vhs (UL41) polypeptide." J Virol 67(12): 7149-7160. Richter-Cook, N. J., T. E. Dever, et al. (1998). "Purification and characterization of a new eukaryotic protein translation factor. Eukaryotic initiation factor 4H." J Biol Chem 273(13): 7579-7587. Richter, N. J., G. W. Rogers, Jr., et al. (1999). "Further biochemical and kinetic characterization of human eukaryotic initiation factor 4H." J Biol Chem 274(50): 35415-35424. Rogers, G. W., Jr., A. A. Komar, et al. (2002). "eIF4A: the godfather of the DEAD box helicases." Prog Nucleic Acid Res Mol Biol 72: 307-331. Rogers, G. W., Jr., W. F. Lima, et al. (2001). "Further characterization of the helicase activity of eIF4A. Substrate specificity." J Biol Chem 276(16): 12598-12608. Rogers, G. W., Jr., N. J. Richter, et al. (2001). "Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F." J Biol Chem 276(33): 30914-30922. Rogers, G. W., Jr., N. J. Richter, et al. (1999). "Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A." J Biol Chem 274(18): 12236-12244. Roizman, B., L. E. Carmichael, et al. (1981). "Herpesviridae. Definition, provisional nomenclature, and taxonomy. The Herpesvirus Study Group, the International Committee on Taxonomy of Viruses." intervirology 16(4): 201-217. Rubenstein, A. S. and A. S. Kaplan (1975). "Electron microscopic studies of the DNA of defective and standard pseudorabies virions." Virology 66(2): 385-392. Saffran, H. A., G. S. Read, et al. (2010). "Evidence for translational regulation by the herpes simplex virus virion host shutoff protein." J Virol 84(12): 6041-6049. Sandri-Goldin, R. M. (1994). "Properties of an HSV-1 regulatory protein that appears to impair host cell splicing." Infect Agents Dis 3(2-3): 59-67. Sarma, N., D. Agarwal, et al. (2008). "Small interfering RNAs that deplete the cellular translation factor eIF4H impede mRNA degradation by the virion host shutoff protein of herpes simplex virus." J Virol 82(13): 6600-6609. Schek, N. and S. L. Bachenheimer (1985). "Degradation of cellular mRNAs induced by a virion-associated factor during herpes simplex virus infection of Vero cells." J Virol 55(3): 601-610. Schmelter, J., J. Knez, et al. (1996). "Identification and characterization of a small modular domain in the herpes simplex virus host shutoff protein sufficient for interaction with VP16." J Virol 70(4): 2124-2131. Schneider-Poetsch, T., T. Usui, et al. (2010). "Garbled messages and corrupted translations." Nat Chem Biol 6(3): 189-198. Shen, B., J. P. Nolan, et al. (1996). "Essential amino acids for substrate binding and catalysis of human flap endonuclease 1." J Biol Chem 271(16): 9173-9176. Shen, B., J. P. Nolan, et al. (1997). "Functional analysis of point mutations in human flap endonuclease-1 active site." Nucleic Acids Res 25(16): 3332-3338. Shope, R. E. (1931). "An Experimental Study of "Mad Itch" with Especial Reference to Its Relationship to Pseudorabies." J Exp Med 54(2): 233-248. Simon, A., T. C. Mettenleiter, et al. (1989). "Pseudorabies virus displays variable numbers of a repeat unit adjacent to the 3'' end of the glycoprotein gII gene." J Gen Virol 70 ( Pt 5): 1239-1246. Smibert, C. A., D. C. Johnson, et al. (1992). "Identification and characterization of the virion-induced host shutoff product of herpes simplex virus gene UL41." J Gen Virol 73 ( Pt 2): 467-470. Smibert, C. A., B. Popova, et al. (1994). "Herpes simplex virus VP16 forms a complex with the virion host shutoff protein vhs." J Virol 68(4): 2339-2346. Smiley, J. R. (2004). "Herpes simplex virus virion host shutoff protein: immune evasion mediated by a viral RNase?" J Virol 78(3): 1063-1068. Smiley, J. R., M. M. Elgadi, et al. (2001). "Herpes simplex virus vhs protein." Methods Enzymol 342: 440-451. Sonenberg, N. and T. E. Dever (2003). "Eukaryotic translation initiation factors and regulators." Curr Opin Struct Biol 13(1): 56-63. Sorenson, C. M., P. A. Hart, et al. (1991). "Analysis of herpes simplex virus-induced mRNA destabilizing activity using an in vitro mRNA decay system." Nucleic Acids Res 19(16): 4459-4465. Stoneley, M. and A. E. Willis (2004). "Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression." Oncogene 23(18): 3200-3207. Strelow, L. I. and D. A. Leib (1995). "Role of the virion host shutoff (vhs) of herpes simplex virus type 1 in latency and pathogenesis." J Virol 69(11): 6779-6786. Strelow, L. I. and D. A. Leib (1996). "Analysis of conserved domains of UL41 of herpes simplex virus type 1 in virion host shutoff and pathogenesis." J Virol 70(8): 5665-5667. Strom, T. and N. Frenkel (1987). "Effects of herpes simplex virus on mRNA stability." J Virol 61(7): 2198-2207. Suzutani, T., M. Nagamine, et al. (2000). "The role of the UL41 gene of herpes simplex virus type 1 in evasion of non-specific host defence mechanisms during primary infection." J Gen Virol 81(Pt 7): 1763-1771. Svitkin, Y. V., A. Pause, et al. (2001). "The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5'' secondary structure." RNA 7(3): 382-394. Taddeo, B., A. Esclatine, et al. (2004). "Post-transcriptional processing of cellular RNAs in herpes simplex virus-infected cells." Biochem Soc Trans 32(Pt 5): 697-701. Taddeo, B., A. Esclatine, et al. (2003). "The stress-inducible immediate-early responsive gene IEX-1 is activated in cells infected with herpes simplex virus 1, but several viral mechanisms, including 3'' degradation of its RNA, preclude expression of the gene." J Virol 77(11): 6178-6187. Taddeo, B. and B. Roizman (2006). "The virion host shutoff protein (UL41) of herpes simplex virus 1 is an endoribonuclease with a substrate specificity similar to that of RNase A." J Virol 80(18): 9341-9345. Taddeo, B., M. T. Sciortino, et al. (2007). "Interaction of herpes simplex virus RNase with VP16 and VP22 is required for the accumulation of the protein but not for accumulation of mRNA." Proc Natl Acad Sci U S A 104(29): 12163-12168. Taddeo, B., W. Zhang, et al. (2006). "The U(L)41 protein of herpes simplex virus 1 degrades RNA by endonucleolytic cleavage in absence of other cellular or viral proteins." Proc Natl Acad Sci U S A 103(8): 2827-2832. Taharaguchi, S., H. Inoue, et al. (1994). "Mapping of transcriptional regulatory domains of pseudorabies virus immediate-early protein." Arch Virol 137(3-4): 289-302. Telford, E. A., M. S. Watson, et al. (1992). "The DNA sequence of equine herpesvirus-1." Virology 189(1): 304-316. Tigges, M. A., S. Leng, et al. (1996). "Human herpes simplex virus (HSV)-specific CD8+ CTL clones recognize HSV-2-infected fibroblasts after treatment with IFN-gamma or when virion host shutoff functions are disabled." J Immunol 156(10): 3901-3910. Tomishima, M. J. and L. W. Enquist (2001). "A conserved alpha-herpesvirus protein necessary for axonal localization of viral membrane proteins." J Cell Biol 154(4): 741-752. Tomishima, M. J., G. A. Smith, et al. (2001). "Sorting and transport of alpha herpesviruses in axons." Traffic 2(7): 429-436. Trgovcich, J., D. Johnson, et al. (2002). "Cell surface major histocompatibility complex class II proteins are regulated by the products of the gamma(1)34.5 and U(L)41 genes of herpes simplex virus 1." J Virol 76(14): 6974-6986. Vagner, S., B. Galy, et al. (2001). "Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites." EMBO Rep 2(10): 893-898. van Santen, V. L. (1991). "Characterization of the bovine herpesvirus 4 major immediate-early transcript." J Virol 65(10): 5211-5224. Vlcek, C., Z. Kozmik, et al. (1990). "Pseudorabies virus immediate-early gene overlaps with an oppositely oriented open reading frame: characterization of their promoter and enhancer regions." Virology 179(1): 365-377. Vojvodova, A., J. Matis, et al. (1997). "Herpes simplex virus type 1 (HSV-1) strain HSZP host shutoff gene: nucleotide sequence and comparison with HSV-1 strains differing in early shutoff of host protein synthesis." Virus Genes 15(2): 155-159. Wakasugi, M., J. T. Reardon, et al. (1997). "The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair." J Biol Chem 272(25): 16030-16034. Watanabe, S., E. Ono, et al. (1998). "Promoter activity of sequence located upstream of the pseudorabies virus early protein 0 gene." Vet Microbiol 61(1-2): 7-19. Wathen, L. M., K. B. Platt, et al. (1985). "Production and characterization of monoclonal antibodies directed against pseudorabies virus." Virus Res 4(1): 19-29. Wathen, M. W. and L. M. Wathen (1984). "Isolation, characterization, and physical mapping of a pseudorabies virus mutant containing antigenically altered gp50." J Virol 51(1): 57-62. Wathen, M. W. and L. M. Wathen (1986). "Characterization and mapping of a nonessential pseudorabies virus glycoprotein." J Virol 58(1): 173-178. Wirth, U. V., C. Fraefel, et al. (1992). "Immediate-early RNA 2.9 and early RNA 2.6 of bovine herpesvirus 1 are 3'' coterminal and encode a putative zinc finger transactivator protein." J Virol 66(5): 2763-2772. Wu, C. A., L. Harper, et al. (1986). "Molecular basis for interference of defective interfering particles of pseudorabies virus with replication of standard virus." J Virol 59(2): 308-317. Wu, C. L. and K. W. Wilcox (1991). "The conserved DNA-binding domains encoded by the herpes simplex virus type 1 ICP4, pseudorabies virus IE180, and varicella-zoster virus ORF62 genes recognize similar sites in the corresponding promoters." J Virol 65(3): 1149-1159. Yang, X., S. Molimau, et al. (2009). "The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA." EMBO Rep 10(9): 997-1002. Yuan, W., A. Dasgupta, et al. (2006). "Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling." Nat Immunol 7(8): 835-842. Zelus, B. D., R. S. Stewart, et al. (1996). "The virion host shutoff protein of herpes simplex virus type 1: messenger ribonucleolytic activity in vitro." J Virol 70(4): 2411-2419. Zhang, G. and D. P. Leader (1990). "The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region." J Gen Virol 71 ( Pt 10): 2433-2441. Zuker, M. (2003). "Mfold web server for nucleic acid folding and hybridization prediction." Nucleic Acids Res 31(13): 3406-3415.
摘要: 假性狂犬病毒(PRV) ,隸屬疱疹病毒科之α-疱疹病毒亞科,為一具有的封套雙股線性DNA病毒,在此分類病毒中又以人類單純疱疹病毒(HSV-1)最具代表性。vhs (virion host shutoff)蛋白位於成熟病毒顆粒的殼膜區間(tegument),由UL41 基因所轉譯,此段基因在所有α-疱疹病毒中有高度的同源性,若將PRV、HSV-1及HSV-2的vhs胺基酸序列比較可劃定四個高度保留的區域(box)。目前對於疱疹病毒vhs蛋白的研究以HSV-1為主;已知其具有RNase 活性無論是mRNA或不帶cap和poly(A)的RNA都可由五端往三端的方向性降解,但無法降解具有高度二級結構的IRES RNA序列。此外,HSV-1 vhs蛋白的RNase活性會受到細胞轉譯起始因子(eIF4 factors)的促進,並透過transcription control和posttranscription control調控宿主細胞的蛋白表現、幫助病毒的DNA複製。2004年時林等首度證實PRV vhs蛋白具有降解RNA的能力,但由於HSV-1 和PRV 之vhs 胺基酸序列相似度僅約38.4%,兩者的vhs 生物特性可能不盡相同,因此本研究將對於PRV vhs蛋白的RNA降解特性,和對細胞內的轉譯調控機制等做進一步探討。 實驗的方向可分為探討PRV vhs蛋白核酸分解活性的in vitro assay和觀察PRV vhs對細胞蛋白表現影響的in vivo assay兩部份。在in vitro的實驗中,再次確認純化的PRV vhs重組蛋白具有RNase活性且其降解能力,且不受RNA二級結構的影響。不同於HSV-1,PRV vhs不具此IRES特異性和五端往三端的方向性。除RNA外,本實驗首次發現PRV vhs具有類似RNase H的活性:可分解RNA-DNA hybrid。PRV vhs蛋白的RNase活性不會受RNA是否具有五端cap或三端poly(A)結構的影響,同樣可降解mRNA和rRNA,且當與eIF4B和eIF4H共同作用時會促進PRV vhs活性。 在in vivo的實驗中, PRV與HSV-1的vhs皆可抑制細胞內的蛋白表現,此作用主要是透過vhs分解RNA的能力所致。若將PRV vhs蛋白上的四個保留區其中任一個造成缺損,即會使PRV vhs失去抑制細胞內的蛋白表現的RNase activity。 此外,PRV box 3內的T172胺基酸(於HSV-1vhs對應的位置為T214) 和box 4內的352、356胺基對PRV vhs的的活性都有決定性的影響,為其活性決定位(key site)之一。 未來可就PRV vhs蛋白是否具有其他核醣核酸酶活性(例如:Fen-1)進行分析,或利用胺基酸比對結果,配合蛋白質構型分析結果選擇最有可能的胺基酸進行分析,需尋找其他PRV vhs的活性決定位。
Pseudorabies virus (PRV) belongs to the alpha-herpesvirinae; the best characterized virus is herpes simplex virus type 1 (HSV-1). UL41 gene encodes vhs (virion host shutoff) protein that is highly conserved in alpha -herpesvirinae. Previous studies showed HSV-1 vhs harbors ribonuclease activity that contributes to the shutoff of protein synthesis in infected cells via mRNA degradation. HSV-1 vhs selectively decays the region near translation initiation and proceeds in an overall 5- to -3 direction. Moreover, vhs-induced RNA cleavage events is also affected by RNA structure; HSV-1 vhs cleavages RNA at sequences immediately 3 to the Internal Ribosome Entry Site (IRES). Reads and Smiley groups showed that HSV-1 vhs selectively targets actively translated mRNAs through interactions with eIF4F components, i.e. eIF4H, eIF4B, and eIF4A. Up to now the function of PRV vhs is poorly understood. Due to the low sequence similarity (as low as 39.3%), vhs proteins of HSV and PRV might share different biochemistry characteristics. Hence, the main goal of our study was set to explore the mechanisms of PRV vhs on the RNase hydrolysis and translational regulation. To do so, vhs was expressed and purified from E. coli. In vitro vhs assay indicated that PRV vhs indeed exerted RNase activity, 70% RNA was degraded after 40 min incubation and also degraded IRES structure. Interestingly, not only mRNA but also rRNA, PRV vhs degraded RNA/DNA hybrid that was shown for the first time. Different from HSV-1, RNA decay mediated by PRV vhs didn't show specific direction and didn't preferentially target at the region at 3 end of IRES. As HSV, PRV vhs ribonuclease activity was significant enhanced by addition of eIF4H and 4B proteins. Moreover in vivo assay demonstrated that each of four highly conserved boxes of vhs contributed to shutoff of protein synthesis via degradation of reporter RNA. Moreover, the dominant negative residue T172 (found in HSV-1 214), and 352, and 356 residues in box IV was the key site for PRV vhs ribonulease activity.
其他識別: U0005-1807201116181700
Appears in Collections:微生物暨公共衛生學研究所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.