Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/66379
標題: 利用重組Baculoviruses表現流感病毒RNA聚合酵素
Expression of Influenza Viral RNA Polymerase by Recombinant Baculoviruses
作者: 陳筱嬋
Chen, Hsiao-Chan
關鍵字: Recombinant Baculoviruses
流感病毒RNA聚合酵素
出版社: 獸醫公共衛生學研究所
引用: Altmann, F., Stuadacher, E., Wilson, I. B., and März, L. 1999. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J 16:109-123. Azzeh, M., Flick, R., and Hobom, G. 2001. Functional analysis of the influenza A virus cRNA promoter and construction of an ambisense transcription system. Virology 289:400-410. Bae, S. H., Cheong, H. K., Lee, J. H., Cheong, C., Kainosho, M., and Choi, B. S. 2001. Structural features of an influenza virus promoter and their implications for viral RNA synthesis. Proc Natl Acad Sci U S A 98:10602-10607. Beaton, A. R., and Krug, R. M. 1981. Selected host cell capped RNA fragments prime influenza viral RNA transcription in vivo. Nucleic Acids Res 9:4423-4436. Beaton, A. R., and Krug, R. M. 1984. Synthesis of the templates for influenza virion RNA replication in vitro. Proc Natl Acad Sci U S A 81:4682-4686. Bishop, D.H.L., 1992. Baculovirus expression vectors. Semin Virol 3:253-264. Biswas, S. K., and Nayak, D. P. 1994. Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol 68:1819-1826. Biswas, S. K., Boutz, P. L., and Nayak, D. P. 1998. Influenza virus nucleoprotein interacts with influenza virus polymerase proteins .J Virol 72:5493-5501. Blaas, D., Patzelt, E., and Keuchler, E. 1982. Identification of the cap binding protein of influenza virus. Nucleic Acids Res 10:4803-4812. Blok, V., Cianci, C., Tibbles, K., Inglis, S., Krystal, M., and Digard, P. 1996. Inhibition of the influenza virus RNA-dependent RNA polymerase by antisera directed against the carboxy-terminal region of the PB2 subunit. J Gen Virol 77:1025-1033. Bouloy, M., Plotch, S. J. and Krug, R. M. 1981. Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc. Natl Acad Sci U S A 75:4886-4890. Braam, J., Ulmanen, I., and Krug, R. M. 1983. Molecular model of a eukaryotic transcription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell 34:611-618. Brownlee, G. G., and Sharps, J. L. 2002. The RNA polymerase of influenza A virus is stabilized by interaction with its viral RNA promoter. J Virol 76:7103-7113. Crescenzo-Chaigne, B., van der Werf, S., and Naffakh, N. 2002. Differential effect of nucleotide substitutions in the 3'' arm of the influenza A virus vRNA promoter on transcription/replication by avian and human polymerase complexes is related to the nature of PB2 amino acid 627. Virology 303:240-252. Davies, A. H. 1994. Current methods for manipulating baculoviruses. Bio/technology 12:47-50. Desselberger, U., Racaniello, V. R., Zazra, J. J., and Palese, P. 1980. The 3'' and 5''-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 8:315-328. Dias, A., Bouvier, D. Crépin, T. McCarthy, A. A., Hart, D. J., Baudin, F., Cusack, S., and Ruiqrok, R. W. 2009. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 485:914-918. Digard, P., Blok, V., and Inglis, S. C. 1989. Complex formation between influenza virus polymerase proteins expressed in Xenopus oocytes. Virology 171:162-169. Flick, R., and Hobom, G. 1999. Interaction of influenza virus polymerase with viral RNA in the ''corkscrew'' conformation. J Gen Virol 80:2565-2572. Flick, R., Neumann, G., Hoffmann, E., Neumeier, E., and Hobolm, G. 1996. Promoter elements in the influenza vRNA terminal structure. RNA 2:1046-1057. Fodor, E., Palese, P., Brownlee, G. G., and García-Sastre, A. 1998. Attenuation of influenza A virus mRNA levels by promoter mutations. J Virol 72:6283-6290. Fodor, E., Pritlove, D. C., and Browmlee, G. G. 1994. The influenza virus panhandle is involved in the initiation of transcription. J Virol 68:4092-4096. Fodor, E., Pritlove, D. C., and Browmlee, G. G. 1995. Characterization of the RNA-fork model of virion RNA in the initiation of transcription in influenza A virus. J Virol 69:4012-4019. Fordor, E., Crow, M., Mingay, L. J., Deng, T., Sharps, J., Fechter, P., and Brownlee, G. G. 2002. A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs. J Virol 76:8989-9001. Galarza, J. M., Peng, Q., and Summers, D. F. 1996. Influenza A virus RNA-dependent RNA polymerase cleaves influenza mRNA in vitro. J Virol 70:2360-2368. González, S., and Ortín, J. 1999. Characterization of influenza virus PB1 protein binding to viral RNA: two separate regions of the protein contribute to the interaction domain. J Virol 73:631-637. González, S., and Ortín, J. 1999. Distinct regions of influenza virus PB1 polymerase subunit recognize vRNA and cRNA templates. EMBO J 18:3767-3775. Guilligay, D., Tarendeau, F., Resa-Infante, P., Coloma, R., Crepin, T., Sehr, P., Lewis, J., Ruigrok, R. W., Ortín, J., Hart, D. J., and Cusack, S. 2008. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15:500-506. Hagen, M., Chung, D. Y., Butcher, J. A., and Krystal, M. 1994. Recombinant influenza virus polymerase: requirement of both 5'' and 3'' viral ends for endonuclease activity. J Virol 68:1509-1515. Hara, K., Schmidt, F. I., Crow, M., and Brownlee, G. G. 2006. Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding. J Virol 80:7789-7798. Hay, A. J., Lomnizi, B., Bellamy, A. R., and Skehel, J. J. 1977. Transcription of the influenza virus genome. Virology 83:337-355. Hay, A. J., Skehel, J. J., and McCauley, J. 1982. Characterization of influenza virus RNA complete transcripts. Virology 116:517-522. Herz, C., Stavnezer, E., Krug, R., and Gurney, T. 1981. Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells. Cell 26:391-400. Honda, A., and Ishihama, A. 1997.Transcription and replication of influenza virus genome. Nippon Rinsho 10:2555-2561. Honda, A., Mizumoto, K., and Ishihama, A. 1998. Identification of the 5'' terminal structure of influenza virus genome RNA by a newly developed enzymatic method. Virus Res 55:199-206. Honda, A., Mizumoto, K., and Ishihama, A. 1999. Two separate aequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes cells 4:475-485. Honda, A., Mukaigawa, J., Yokoiyama, A., Kato, A., Ueda, S., Nagata, K., Krystal, M., Nayak, D., and Ishihama, A. 1990. Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J Biochem 107:642-628. Horisberger, M. A. 1980. The large P proteins of influenza A viruses are composed of one acidic and two basic polypeptides. Virology 107:302-305. Hsu, M. T., Parvin, J. D., Gupta, S., Krystal, M., and Palese, P. 1987. Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci U S A 84:8140-.8184. Huarte, M., Sanz-Ezquerro, J. J., Roncal, F., Ortín, J., and Nieto, A. 2001. PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J Virol 75:8597-8604. Hüser, A., and Hofmann, C. 2003. Baculovirus vectors: novel mammalian cell gene-delivery vehicles and their applications. Am J Pharmacogenomics 3:53-63. Ishihama, A. 1996. A multi-functional enzyme with RNA polymerase and RNase activities: molecular anatomy of influenza virus RNA polymerase. Biochimie 78:1097-1102. Ishihama, A. 1996. Molecular communications in transcription: basic mechanisms of transcription regulation. Tanpakushitsu kakusan koso 8:1328-1331. Jackson, D. A., Caton, A. J., McCready, S. J., and Cook, P. R. 1982. Influenza virus RNA is synthesized at fixed sites in the nucleus. Nature 296:366-368. Janknecht, R., de Martynoff, G., Lou, J., Hipskind, R. A., Nordheim, A., and Stunnenberg, H. G. 1991. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc Natl Acad Sci U S A 88:8972-8976. Kato, A., Mizumoto, K., and Ishihama, A. 1985. Purification and enzymatic properties of an RNA polymerase-RNA complex from influenza virus. Virus Res 3:115-127. Kawakami, K., Mizumoto, K., Ishihama, A., Shinozaki-Yamaguchi, K., and Miura, K.1985. Activation of influenza virus-associated RNA polymerase by cap-1 structure (m7GpppNm). J Biochem 2:655-661. Krug, R. M. 1983.Transcription and replication of influenza viruses. In Palese, P., and Kingsbury, D. W. (ed.). Genetics of Influenza Viruses, Springer-Verlag, New York. Krug, R. M., Alonso-Caplen, F. V., Julkunen, I., and Katze, M. 1989. Expression and replication of the influenza virus genome. In Krug, R. M.(ed.). The influenza viruses. Plenum, New York. Krystal, M., R. Li, D. Lyles, G. Pavlakis, and P. Palese. 1986. Expression of the three virus polymerase proteins in a single cell allows growth complememtation of viral mutants. Proc Natl Acad Sci 83:2709-2713. Lamb, R. A. 1989. Genes and proteins of the influenza viruses. In Krug, R. M.(ed.). The influenza viruses, Plenum, New York. Lamb, R. A., and Horvath, C. M. 1991. Diversity of coding strategies in influenza viruses. Trends Genet 7:261-266. Leahy, M. B., Dobbyn, H. C., and Brownlee, G. G. 2001. Hairpin loop structure in the 3'' arm of the influenza A virus virion RNA promoter is required for endonuclease activity. J Virol 75:7042-7049. Leahy, M., Zecchin, G., and Brownlee, G. G. 2002. Differential activation of influenza A virus endonuclease activity is dependent on multiple sequence differences between the virion RNA and cRNA promoters. J Virol 76:2019-2023. Lee, M. T., Bishop, K., Medcalf, L., Elton, D. Digard, P., and Tiley, L. 2002. Definition of the minimal viral components required for the initiation of unprimed RNA synthesis by influenza virus RNA polymerase. Nucleic Acids Res 30:429-438. Li, M. L., Ramirez, B. C., and Krug, R. M. 1998. RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA-binding sites. EMBO J 17:5844-5852. Li, M. L., Rao, P., and Krug, R. M. 2001. The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J 20:2078-2086. Li, X., and Palese, P. 1994. Characterization of the polyadenylation signal of influenza virus RNA. J Virol 68:1245-1249. Luo, G. X., Luytjes, W., Enami, M., and Palese, P. 1991. The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. J Virol 65:2861-2867. Luytjes, W., Krystal, M., Enami, M, Parvin, J. D., and Palese, P. 1989. Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59:1107-1113. Mahy, B. W. J., Barrett, T., Nichol, S. T., Penn, C. R., and Wolsteinholme, A. J. 1981. Analysis of the functions of influenza virus genome RNA segments by use of temperature-sensitive mutants of fowl plague virus. In Bishop, D. H. L., and Compans, R. W.(ed.). The replication of negative stranded viruses, Elsevier, New York. Medcalf, L., Poole, E., Elton, D., and Digard, P. Temperature-sensitive lesions in two influenza A viruses defective for replicative transcription disrupt RNA binding by the nucleoprotein. 1999. J Virol 73:7349-7356. Mena, I., Jambrina, E., Albo, C., Perales, B., Ortín, J., Arrese, M., Vallejo, D., and Portela, A. 1999. Mutational analysis of influenza A virus nucleoprotein: identification of mutations that affect RNA replication. J Virol 73:1186-1194. Mena, I., S. de la Luna, C. Albo, J. Martin, A. Nieto, J. Ortin, and A. Portela. 1994. Synthesis of biologically active influenza virus core proteins using a vaccinia virus-T7 RNA polymerase expression system. J Gen Virol 75:2109-2114. Momose, F., Naito, T., Yano, K., Sugimoto, S., Morikawa, Y., and Nagata, K. 2002. Identification of Hsp90 as a Stimulatory Host Factor Involved in Influenza Virus RNA Synthesis. J Biol Chem 277:45306-45314. Murphy, C. I., Piwnica-Worms, H., Grünwald, S., Romanow, W. G., Francis, N., and Fan, H. Y. 2004. Overview of the baculovirus expression system. Curr Protoc Mol Biol Chapter 16:Unit 16.9. Naffakh, N., Massin, P., and van der Werf, S. 2001. The transcription/replication activity of the polymerase of influenza A viruses is not correlated with the level of proteolysis induced by the PA subunit. Virology 285:244-252. Naffakh, N., Tomoiu, A., Rameix-Welti, MA., and van der Werf, S. Host restriction of avian influenza viruses at the level of the ribonucleoproteins. 2008. Annu Rev Microbiol 62:403-424. Nagata, K., Kawaguchi, A., and Naito, T. 2008. Host factors for replication and transcription of the influenza virus genome. Rev Med Virol 18:247-260. Naito, T., Momose, F., Kawaguchi, A., and Nagata, K. 2007. Involvement of Hsp90 in Assembly and Nuclear Import of Influenza Virus RNA Polymerase Subunits. J Virol 81:1339-1349. Nakagawa, Y., Kimura, N., Toyoda, T., Mizumoto, K., Ishihama, A., Oda, K., and Nakada, S. 1995. The RNA polymerase PB2 subunit is not required for replication of the influenza virus genome but is involved in capped mRNA synthesis. J Virol 69:728-733. Nakagawa, Y., Oda, K., and Nakada, S. 1996. The PB1 subunit alone can catalyze cRNA synthesis, and the PA subunit in addition to the PB1 subunit is required for viral RNA synthesis in replication of the influenza virus genome. J Virol 70:6390-6394. Neumann, G., and Hobom, G. 1995. Mutational analysis of influenza virus promoter elements in vivo. J Gen Virol 76:1709-1717. Obayashi, E., Yoshida, H., Kawai, F., Shibayama, N., Kawaguchi, A., Nagata, K.,Tame, J. R., and Park, S. Y. 2008. The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature 454: 1127-1131. Patterson, R. M., Selkirk, J. K., and Merrick, B. A. 1995. Baculovirus and insect cell gene expression: review of baculovirus biotechnology. Environ Health Perspect 103:756-759. Perales, B., and Ortín, J. 1997. The influenza A virus PB2 polymerase subunit is required for the replication of viral RNA. J Virol 71:1381-1385. Perales, B., Sanz-Ezquerro, J. J., Gastaminza, P., Ortega, J., Santarén, J. F., Ortín, J., and Nieto, A. 2000. The replication activity of influenza virus polymerase is linked to the capacity of the PA subunit to induce proteolysis. J Virol 74:1307-1312. Plotch, S. J., Bouloy, M., Ulmanen, I., and Krug, M. 1981. A unique cap (m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23:847-858. Pons, M. W. 1971. Isolation of influenza virus ribonucleoprotein from infected cells. Demonstration of the presence of negative-stranded RNA in viral RNP. Virology 46:149-160. Poole, E., Elton, D., Medcalf, L., and Digard, P. 2004. Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology 321:120-133. Poole, E., Elton, D., Medcalf, L., and Digard, P. 2007. Evidence that the C-terminal PB2-binding region of the influenza A virus PB1 protein is a discrete alpha-helical domain. FEBS Lett 581:5300-5306. Portela, A., and Digard, P. 2002. The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol 83:723-734. Pritlove, D. C., Poon, L. L., Fodor, E., Sharps, J., and Brownlee, G. G. 1998. Polyadenylation of influenza virus mRNA transcribed in vitro from model virion RNA templates: requirement for 5'' conserved sequences. J Virol 72:1280-1286. Robertson, J. S., Schubert, M., and Lazzarini, R. A. 1981. Polyadenylation sites for influenza virus mRNA. J Virol 38:157-163. Roy, P., Mikhailov, M., and Bishop, D. H. L. 1997. Baculovirus multigene expression vectors and their use for understanding the assembly process of architecturally complex virus particles. Gene 190:119-129. Sanz-Ezquerro, J. J., de la Luna, S., Ortín, J., and Naito, A. 1995. Individual expression of influenza virus PA protein induces degradation of coexpressed proteins. J Virol 69:2420-2426. Sanz-Ezquerro, J. J., Zürcher, T., de la Luna, S., Ortín, J., and Naito, A. 1996. The amino-terminal one-third of the influenza virus PA protein is responsible for the induction of proteolysis. J Virol 70:1905-1911. Schmidt, M., Tuominen, N., Johansson, T., Weiss, S. A., Keinanen, K., and Oker-Blom, C. 1998. Baculovirus-mediated large-scale expression and purification of a polyhistidine-tagged rubella virus capsid protein. Protein Expr Purif 12:323-330. Seong, B. L. Kobayashi, M., Nagata, K., Brownlee, G. G., and Ishihama, A. 1992. Comparison of two reconstituted systems for in vitro transcription and replication of influenza virus. J Biochem 111: 496-499. Shapiro, G. I., Gurney, T. Jr., and Krug, R. M. 1987. Influenza virus gene expression: control mechanisms at early and late times of infection and nuclear-cytoplasmic transport of virus-specific RNAs. J Virol 61:764-773. Shaw, M. W., and Lamb, R. A. 1984. A specific sub-set of host-cell mRNAs prime influenza virus mRNA synthesis. Virus Res 1:455-467. Shi, L., Galarza, J. M., and Summers, D. F. 1996. Influenza A virus RNA-dependent RNA polymerase cleaves influenza mRNA in vitro. Virus Res 42:149-158. Shrestha, B., Smee, C., and Gileadi, O. 2008. Baculovirus expression vector system: an emerging host for high-throughput eukaryotic protein expression. Methods Mol Biol 439:269-289. Stoeckle, M. Y., Shaw, M. W., and Choppin, P. W. 1987. Segment-specific and common nucleotide sequences in the noncoding regions of influenza B virus genome RNAs. Proc Natl Acad Sci U S A 84:2703-2707. Studier, W.F., Rosenberg, A.H., Dunn, J.J. and Dubendorff, J.W. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology 185:60-89. Subbarao, E. K., London, W., and Murphy, B. R. 1993. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67:1761-1764. Tiley, L. S., Hagen, M., Matthews, J. T., and Krystal, M. 1994. Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5'' ends of the viral RNAs. J Virol 68:5108-5116. Ulmanen, I., Broni, B., and Krug, R. M. 1983. Influenza virus temperature-sensitive cap (m7GpppNm)-dependent endonuclease. J Virol 45:27-35. Vreede, F. T., Jung, T. E., and Brownlee, G. G. 2004. Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol 78:9568-9572. Young, R. J., and Content, J. 1971. 5''-terminus of influenza virus RNA. Nat New Biol 230:140-142. Zheng, H., Palese, P., and García -Sastre, A. 1996. Nonconserved nucleotides at the 3'' and 5'' ends of an influenza A virus RNA play an important role in viral RNA replication. Virology 217:242-251. Zhu, A., and Wang, Z. K. 1996. Expression and characterization of recombinant alpha-galactosidase in baculovirus-infected insect cells. Eur J Biochem 235:332-337.
摘要: A型流感病毒屬於正黏液病毒科(Orthomyxoviridae),其基因體包含八段負股RNA。 每一段流感病毒之基本單位由核蛋白及流感病毒RNA聚合酵素複合體所組合而成(vRNP)。其中,流感病毒RNA聚合酵素複合體由三個次單位 (subunit)蛋白質所構成︰PA、PB1及PB2。於宿主細胞核中,流感病毒之RNA (vRNA) 經由轉錄產生mRNA,也經由複製產生cRNA,cRNA隨即被當成模板,以製造更多的病毒vRNA。在每一段病毒RNA 5’端及3’端之promoter各有13及12個核甘酸為高度保留之序列,可配對形成二級結構,此結構對於promoter之功能行使相當重要。 目前於資料庫中顯示,A型流感病毒株H5N2在病毒(cRNA) promoter區域有部分核甘酸的變異,對於此變異與流感病毒RNA聚合酵素複合體之間的作用是否有影響,為本實驗想要探討之對象。因此本實驗嘗試以baculovirus expression vector system (BEVS)表達出流感病毒RNA聚合酶。BEVS利用一個含有目標基因的transfer vector (pFastBac TM),將此段外源性基因藉由轉位作用(Transposition)嵌入不影響baculovirus複製的基因體區段,重組過後之baculovirus會帶有外源性基因,利用此病毒之polyhedrin (PH) promoter可於感染之昆蟲細胞中表現高量的外源性蛋白。 由於昆蟲細胞可同時被兩種以上攜帶不同表現基因的重組病毒感染;利用此特質,本實驗構築攜帶PA-His、PB1及PB2基因之重組baculovirus, 藉以生產感冒病毒之RNA聚合酵素複合體。 經PCR確認重組病毒之後,於昆蟲細胞中產生病毒子代,並以superinfection的方式產生流感病毒RNA聚合酵素複合體。西方墨點法(Western blot analysis)結果顯示,BEVS可成功表現此三種流感病毒聚合酶次單位。未來將進一步產生流感病毒RNA聚合酵素複合體並利用親合性管柱層析法將之純化,以應用於流感病毒promoter的功能分析。
The genome of influenza A virus is composed of eight negative-strand RNA segments which contain short noncoding regions at their 3' and 5' ends. In virions and infected cells, viral genomic RNAs (vRNA) are tightly associated with the viral NP and P (PB1, PB2, and PA) proteins as ribonucleoprotein (RNP) complexes. Once the RNPs have entered the nucleus of the infected cells, they undergo transcription and replication. The highly conserved noncoding nucleotides in vRNA termini, which form ‘‘panhandle'' or ‘‘fork'' structures by partial complementarity, are important for the transcriptional activity of the viral RNA polymerase. Sequence variations were found in cRNA promoter of HA segment of H5N2 isolates; therefore, the aim of this study was to express influenza polymerase complex for functional analysis of such promoter variants. The recombinant baculovirus expressing individual polymerase was constructed. Western blot analysis confirmed each subunit protein indeed expressed in Sf9 cells infected with recombinant baculovirus. To obtain the polymerase complex, Sf9 cells were super-infected with baculoviruses expressing three individual polymerase subunits that would be purified by means of Ni-NTA affinity chromatography. The structure functional analysis of H5N2 promoter variants will be further conducted by using this recombinant polymerase complex.
URI: http://hdl.handle.net/11455/66379
其他識別: U0005-2807200913411900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2807200913411900
Appears in Collections:微生物暨公共衛生學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.