Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorWei-Li Hsuen_US
dc.contributor.authorOu, Jun-Linen_US
dc.identifier.citationAggarwal, B. B., A. Kumar, et al. (2003). "Anticancer potential of curcumin: preclinical and clinical studies." Anticancer Res 23(1A): 363-398. Akarsu, H., W. P. Burmeister, et al. (2003). "Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2)." EMBO J 22(18): 4646-4655. Ammon, H. P. and M. A. Wahl (1991). "Pharmacology of Curcuma longa." Planta Med 57(1): 1-7. Anand, P., A. B. Kunnumakkara, et al. (2007). "Bioavailability of curcumin: problems and promises." Mol Pharm 4(6): 807-818. Baudin, F., C. Bach, et al. (1994). "Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent." EMBO J 13(13): 3158-3165. Baudin, F., I. Petit, et al. (2001). "In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein." Virology 281(1): 102-108. Ben-Yedidia, T. and R. Arnon (2005). "Towards an epitope-based human vaccine for influenza." Hum Vaccin 1(3): 95-101. Bhaumik, S., M. D. Jyothi, et al. (2000). "Differential modulation of nitric oxide production by curcumin in host macrophages and NK cells." FEBS Lett 483(1): 78-82. Booy, F. P., R. W. Ruigrok, et al. (1985). "Electron microscopy of influenza virus. A comparison of negatively stained and ice-embedded particles." J Mol Biol 184(4): 667-676. Bui, M., G. Whittaker, et al. (1996). "Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins." J Virol 70(12): 8391-8401. Bui, M., E. G. Wills, et al. (2000). "Role of the influenza virus M1 protein in nuclear export of viral ribonucleoproteins." J Virol 74(4): 1781-1786. Caton, A. J. and J. S. Robertson (1980). "Structure of the host-derived sequences present at the 5'' ends of influenza virus mRNA." Nucleic Acids Res 8(12): 2591-2603. Chang, S. L., Y. M. Chiang, et al. (2007). "Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-gamma expression." J Ethnopharmacol 112(2): 232-236. Chase, G., T. Deng, et al. (2008). "Hsp90 inhibitors reduce influenza virus replication in cell culture." Virology 377(2): 431-439. Chen, D.-Y., J.-H. Shien, et al. (2010). "Curcumin inhibits influenza virus infection and haemagglutination activity." Food Chemistry 119(4): 1346-1351. Chen, T. Y., D. Y. Chen, et al. (2013). "Inhibition of enveloped viruses infectivity by curcumin." PLoS One 8(5): e62482. Cheng, A. L., C. H. Hsu, et al. (2001). "Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions." Anticancer Res 21(4B): 2895-2900. Corson, T. W. and C. M. Crews (2007). "Molecular understanding and modern application of traditional medicines: triumphs and trials." Cell 130(5): 769-774. Dawood, F. S., S. Jain, et al. (2009). "Emergence of a novel swine-origin influenza A (H1N1) virus in humans." N Engl J Med 360(25): 2605-2615. De Clercq, E. (2006). "Antiviral agents active against influenza A viruses." Nat Rev Drug Discov 5(12): 1015-1025. Deodhar, S. D., R. Sethi, et al. (1980). "Preliminary study on antirheumatic activity of curcumin (diferuloyl methane)." Indian J Med Res 71: 632-634. deRojas-Walker, T., S. Tamir, et al. (1995). "Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA." Chem Res Toxicol 8(3): 473-477. Digard, P., V. C. Blok, et al. (1989). "Complex formation between influenza virus polymerase proteins expressed in Xenopus oocytes." Virology 171(1): 162-169. Dinkova-Kostova, A. T. (2001). "From the Cover: Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups." Proceedings of the National Academy of Sciences 98(6): 3404-3409. Dinkova-Kostova, A. T., M. A. Massiah, et al. (2001). "Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups." Proc Natl Acad Sci U S A 98(6): 3404-3409. Dinkova-Kostova, A. T. and P. Talalay (1999). "Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes." Carcinogenesis 20(5): 911-914. Dutta, K., D. Ghosh, et al. (2009). "Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin-proteasome system." J Neuroimmune Pharmacol 4(3): 328-337. Ehrhardt, C., H. Marjuki, et al. (2006). "Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence." Cell Microbiol 8(8): 1336-1348. Flory, E., M. Kunz, et al. (2000). "Influenza virus-induced NF-kappaB-dependent gene expression is mediated by overexpression of viral proteins and involves oxidative radicals and activation of IkappaB kinase." J Biol Chem 275(12): 8307-8314. Fodor, E., D. C. Pritlove, et al. (1994). "The influenza virus panhandle is involved in the initiation of transcription." J Virol 68(6): 4092-4096. Gao, R., B. Cao, et al. (2013). "Human infection with a novel avian-origin influenza A (H7N9) virus." N Engl J Med 368(20): 1888-1897. Govorkova, E. A., N. A. Ilyushina, et al. (2007). "Efficacy of oseltamivir therapy in ferrets inoculated with different clades of H5N1 influenza virus." Antimicrob Agents Chemother 51(4): 1414-1424. Hale, B. G., D. Jackson, et al. (2006). "Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling." Proc Natl Acad Sci U S A 103(38): 14194-14199. Hayden, F. G. (2006). "Antiviral resistance in influenza viruses--implications for management and pandemic response." N Engl J Med 354(8): 785-788. He, X., J. Zhou, et al. (2008). "Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus." Nature 454(7208): 1123-1126. Herlocher, M. L., J. Carr, et al. (2002). "Influenza virus carrying an R292K mutation in the neuraminidase gene is not transmitted in ferrets." Antiviral Res 54(2): 99-111. Herz, C., E. Stavnezer, et al. (1981). "Influenza virus, an RNA virus, synthesizes its messenger RNA in the nucleus of infected cells." Cell 26(3 Pt 1): 391-400. Hoehle, S. I., E. Pfeiffer, et al. (2006). "Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver." J Agric Food Chem 54(3): 756-764. Holmes, E. C., D. J. Lipman, et al. (2006). "Comment on "Large-scale sequence analysis of avian influenza isolates"." Science 313(5793): 1573; author reply 1573. Honda, A., K. Mizumoto, et al. (1999). "Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase." Genes Cells 4(8): 475-485. Honda, A., J. Mukaigawa, et al. (1990). "Purification and molecular structure of RNA polymerase from influenza virus A/PR8." J Biochem 107(4): 624-628. Huang, T. S., P. Palese, et al. (1990). "Determination of influenza virus proteins required for genome replication." J Virol 64(11): 5669-5673. Ito, T., Y. Suzuki, et al. (2000). "Recognition of N-glycolylneuraminic acid linked to galactose by the alpha2,3 linkage is associated with intestinal replication of influenza A virus in ducks." J Virol 74(19): 9300-9305. Jin, H., B. Lu, et al. (2003). "Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60." Virology 306(1): 18-24. Kanda, T., O. Yokosuka, et al. (2013). "Treatment of hepatitis C virus infection in the future." Clin Transl Med 2(1): 9. Karin, M. and M. Delhase (2000). "The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling." Semin Immunol 12(1): 85-98. Karlsson Hedestam, G. B., R. A. Fouchier, et al. (2008). "The challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus." Nat Rev Microbiol 6(2): 143-155. Kim, K. J., E. S. Park, et al. (2013). "Novel Influenza A (H1N1)-Associated Acute Necrotizing Encephalopathy: A Case Report." Ann Rehabil Med 37(2): 286-290. Ko, H. C., B. L. Wei, et al. (2006). "The effect of medicinal plants used in Chinese folk medicine on RANTES secretion by virus-infected human epithelial cells." J Ethnopharmacol 107(2): 205-210. Krug, R. M., W. Yuan, et al. (2003). "Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein." Virology 309(2): 181-189. Kumar, N., Z. T. Xin, et al. (2008). "NF-kappaB signaling differentially regulates influenza virus RNA synthesis." J Virol 82(20): 9880-9889. Kutluay, S. B., J. Doroghazi, et al. (2008). "Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity." Virology 373(2): 239-247. Lam, W. Y., J. W. Tang, et al. (2008). "Avian influenza virus A/HK/483/97(H5N1) NS1 protein induces apoptosis in human airway epithelial cells." J Virol 82(6): 2741-2751. Lamb, R. A. and M. Takeda (2001). "Death by influenza virus protein." Nat Med 7(12): 1286-1288. Lange, S. S., K. Takata, et al. (2011). "DNA polymerases and cancer." Nat Rev Cancer 11(2): 96-110. Le, Q. M., M. Kiso, et al. (2005). "Avian flu: isolation of drug-resistant H5N1 virus." Nature 437(7062): 1108. Lee, J., Y. H. Im, et al. (2005). "Curcumin inhibits interferon-alpha induced NF-kappaB and COX-2 in human A549 non-small cell lung cancer cells." Biochem Biophys Res Commun 334(2): 313-318. Lin, J. K., M. H. Pan, et al. (2000). "Recent studies on the biofunctions and biotransformations of curcumin." Biofactors 13(1-4): 153-158. Liptay, S., C. K. Weber, et al. (2003). "Mitogenic and antiapoptotic role of constitutive NF-kappaB/Rel activity in pancreatic cancer." Int J Cancer 105(6): 735-746. Loo, Y. M. and M. Gale, Jr. (2007). "Influenza: fatal immunity and the 1918 virus." Nature 445(7125): 267-268. Mazur, I., W. J. Wurzer, et al. (2007). "Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-kappaB-inhibiting activity." Cell Microbiol 9(7): 1683-1694. McGeer, A., K. A. Green, et al. (2007). "Antiviral therapy and outcomes of influenza requiring hospitalization in Ontario, Canada." Clin Infect Dis 45(12): 1568-1575. Meier, V., E. Burger, et al. (2003). "Ribavirin inhibits DNA, RNA, and protein synthesis in PHA-stimulated human peripheral blood mononuclear cells: possible explanation for therapeutic efficacy in patients with chronic HCV infection." J Med Virol 69(1): 50-58. Min, J. Y. and R. M. Krug (2006). "The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2''-5'' oligo (A) synthetase/RNase L pathway." Proc Natl Acad Sci U S A 103(18): 7100-7105. Mizushina, Y., M. Hirota, et al. (2003). "Some anti-chronic inflammatory compounds are DNA polymerase lambda-specific inhibitors." Biochem Pharmacol 66(10): 1935-1944. Mizushina, Y., T. Ishidoh, et al. (2005). "Monoacetylcurcumin: a new inhibitor of eukaryotic DNA polymerase lambda and a new ligand for inhibitor-affinity chromatography." Biochem Biophys Res Commun 337(4): 1288-1295. Mizushina, Y., S. Kamisuki, et al. (2002). "Petasiphenol: a DNA polymerase lambda inhibitor." Biochemistry 41(49): 14463-14471. Nagata, K., A. Kawaguchi, et al. (2008). "Host factors for replication and transcription of the influenza virus genome." Rev Med Virol 18(4): 247-260. Nayak, D. P., E. K. Hui, et al. (2004). "Assembly and budding of influenza virus." Virus Res 106(2): 147-165. Nicholls, H. (2006). "Pandemic influenza: the inside story." PLoS Biol 4(2): e50. Nichols, J. E., J. A. Niles, et al. (2001). "Human lymphocyte apoptosis after exposure to influenza A virus." J Virol 75(13): 5921-5929. Nimmerjahn, F., D. Dudziak, et al. (2004). "Active NF-kappaB signalling is a prerequisite for influenza virus infection." J Gen Virol 85(Pt 8): 2347-2356. Nishida, M., S. Nishiumi, et al. (2010). "Monoacetylcurcumin strongly regulates inflammatory responses through inhibition of NF-kappaB activation." Int J Mol Med 25(5): 761-767. Noah, D. L. and R. M. Krug (2005). "Influenza virus virulence and its molecular determinants." Adv Virus Res 65: 121-145. Obenauer, J. C., J. Denson, et al. (2006). "Large-scale sequence analysis of avian influenza isolates." Science 311(5767): 1576-1580. Ohuchi, M., N. Asaoka, et al. (2006). "Roles of neuraminidase in the initial stage of influenza virus infection." Microbes Infect 8(5): 1287-1293. Ozawa, M., K. Fujii, et al. (2007). "Contributions of two nuclear localization signals of influenza A virus nucleoprotein to viral replication." J Virol 81(1): 30-41. Pinto, L. H. and R. A. Lamb (2006). "Influenza virus proton channels." Photochem Photobiol Sci 5(6): 629-632. Pinto, L. H. and R. A. Lamb (2006). "The M2 proton channels of influenza A and B viruses." J Biol Chem 281(14): 8997-9000. Plotch, S. J., B. O''Hara, et al. (1999). "Inhibition of influenza A virus replication by compounds interfering with the fusogenic function of the viral hemagglutinin." J Virol 73(1): 140-151. Plummer, S. M., K. A. Holloway, et al. (1999). "Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex." Oncogene 18(44): 6013-6020. Poole, E., D. Elton, et al. (2004). "Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites." Virology 321(1): 120-133. Poole, E. L., L. Medcalf, et al. (2007). "Evidence that the C-terminal PB2-binding region of the influenza A virus PB1 protein is a discrete alpha-helical domain." FEBS Lett 581(27): 5300-5306. Ravindranath, V. and N. Chandrasekhara (1981). "Metabolism of curcumin--studies with [3H]curcumin." Toxicology 22(4): 337-344. Robertson, J. S., C. Nicolson, et al. (1993). "The role of amniotic passage in the egg-adaptation of human influenza virus is revealed by haemagglutinin sequence analyses." J Gen Virol 74 ( Pt 10): 2047-2051. Rothberg, M. B., S. D. Haessler, et al. (2008). "Complications of viral influenza." Am J Med 121(4): 258-264. Rudneva, I. A., V. P. Kovaleva, et al. (1993). "Influenza A virus reassortants with surface glycoprotein genes of the avian parent viruses: effects of HA and NA gene combinations on virus aggregation." Arch Virol 133(3-4): 437-450. Sandur, S. K., M. K. Pandey, et al. (2007). "Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism." Carcinogenesis 28(8): 1765-1773. Si, X., Y. Wang, et al. (2007). "Dysregulation of the ubiquitin-proteasome system by curcumin suppresses coxsackievirus B3 replication." J Virol 81(7): 3142-3150. Smith, C. B., R. P. Charette, et al. (1980). "Lack of effect of oral ribavirin in naturally occurring influenza A virus (H1N1) infection." J Infect Dis 141(5): 548-554. Srinivasan, B., T. E. Johnson, et al. (2009). "Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3'',4'',5''-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities." J Med Chem 52(22): 7228-7235. Taubenberger, J. K. and D. M. Morens (2006). "1918 Influenza: the mother of all pandemics." Emerg Infect Dis 12(1): 15-22. Taubenberger, J. K., A. H. Reid, et al. (1997). "Initial genetic characterization of the 1918 "Spanish" influenza virus." Science 275(5307): 1793-1796. Taubenberger, J. K., A. H. Reid, et al. (2005). "Characterization of the 1918 influenza virus polymerase genes." Nature 437(7060): 889-893. Thangapazham, R. L., A. Sharma, et al. (2006). "Multiple molecular targets in cancer chemoprevention by curcumin." AAPS J 8(3): E443-449. Trifonov, V., H. Khiabanian, et al. (2009). "The origin of the recent swine influenza A(H1N1) virus infecting humans." Euro Surveill 14(17). Vajragupta, O., P. Boonchoong, et al. (2005). "Active site binding modes of curcumin in HIV-1 protease and integrase." Bioorg Med Chem Lett 15(14): 3364-3368. Wahlstrom, B. and G. Blennow (1978). "A study on the fate of curcumin in the rat." Acta Pharmacol Toxicol (Copenh) 43(2): 86-92. Wang, Y. J., M. H. Pan, et al. (1997). "Stability of curcumin in buffer solutions and characterization of its degradation products." J Pharm Biomed Anal 15(12): 1867-1876. Wu, W. W., Y. H. Sun, et al. (2007). "Nuclear import of influenza A viral ribonucleoprotein complexes is mediated by two nuclear localization sequences on viral nucleoprotein." Virol J 4: 49. Xiang, L., Y. Nakamura, et al. (2011). "Tetrahydrocurcumin extends life span and inhibits the oxidative stress response by regulating the FOXO forkhead transcription factor." Aging (Albany NY) 3(11): 1098-1109. Yamada, H., R. Chounan, et al. (2004). "Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria." FEBS Lett 578(3): 331-336.en_US
dc.description.abstractCurcumin (薑黃素)常用來作為食品染色劑和香料。越來越多的證據表示,薑黃素具有抗癌、抗發炎、抗菌的特性,在醫學研究上特別受到關注。近期實驗室研究證明薑黃素可抑制感染A型流感病毒(IAV),其機制之一是透過干擾病毒的Hamagglutintin (HA)活性。本研究試圖透過比較分析薑黃素與其功能結構類似物,包含Tetrahydrocurcumin (THC)、Monoacetylcurcumin (MAC)和 Petasiphenol (Pet) 對於IAV複製之作用,以探究薑黃素的抗流感病毒之關鍵結構。在病毒感染不同時期加入藥物處理,結果顯示所有的類似物都能抑制IAV,其中MAC與薑黃素抑制IAV子代病毒產生能力相當接近,THC和Pet抑制能力比薑黃素差很多。此外,比較處理藥物後對於IAV感染力之影響,得知THC和Pet在抑制流感病毒斑形成能力的影響較弱; curcumin與MAC的抑制50 %病毒斑形成之濃度( EC50) 分別為0.17 μM及0.2 μM,Pet則為14.65 μM。但是除了薑黃素,所有測試的類似物均不具有抑制流感病毒HA蛋白質的活性。在結構上薑黃素與MAC在中央碳鍊具有兩個雙鍵(構成enone官能基),而Pet帶有一個,THC則是不具有enone官能基。實驗證明中央碳鏈上的兩個雙鍵可能是curcumin抗流感的關鍵結構。Enone group為Michael acceptor electrophile (MAE),會與胺基酸之S-H group交互作用,進而與蛋白質以共價鍵方式結合。 因此推測curcumin極有可能藉由Enone group與病毒蛋白結合,干擾病毒表面蛋白的功能和降低病毒的感染力。综上所述, 測試之薑黃素類似物中,薑黃素的穩定代謝物THC仍具有抑制IAV的能力,而MAC抗IAV能力不亞於薑黃素,具有開發為新型抗流感藥物之潛力。比較分析薑黃素結構類似物對於IAV之作用,發現薑黃素中央碳鍊的兩個雙鍵為抑制IAV之關鍵結構。zh_TW
dc.description.abstractCurcumin is a commonly used colouring agent and spice in food. Accumulated evidence indicates that curcumin is associated with a great variety of pharmacological activities, including an antimicrobial effect. Previously, we reported curcumin inhibits the infection of type A influenza virus (IAV) and proved one of the mechanisms is through interfering the viral HA activity. To investigate the structure contributing to its anti-IAV activity, structural and functional analogues of Curcumin (Cur), such as Tetrahydrocurcumin (THC), Monoacetylcurcumin (MAC) and Petasiphenol (Pet) were comparatively analyzed in the current study. The result of time-of-drug addition tests revealed that all the analogues analyzed were able to inhibit IAV production in cell cultures; MAC has a similar strength to curcumin, whereas Pet and THC inhibit IAV to a much less extent than curcumin. Comparative analysis of curcumin analogues described herein demonstrated that Thc and Pet have much less effect on suppression of plaque formation ability; the EC50 of pet are 14.65 μM, whereas curcumin and MAC is 0.17 and 0.2 μM, respectively. Surprisingly, none of the analogues harbors HA inhibition effect. Considering that as with curcumin, the structure of MAC contains two double bonds in the central seven-carbon chain, whereas Pet and THC has one or none, respectively, it indicates the presence of double bond is crucial for the anti-IAV activity. The unsaturated carbonyl group acts as the acceptor of Michael addition reaction that involves in the intermolecular conjugation by formation of covalent Michael adducts with certain proteins. It is very possible that via Michael addition reaction, curcumin conjugated with viral protein that in turns alters or interferes with the function of viral surface proteins and inactivate virus infectivity. In conclusion, THC, one of the stable curcumin metabolites exhibits anti-IAV activity and MAC appears to be an effective agent for inhibition of IAV infection. Moreover, comparative analysis of curcuminoids indicated that the two double bonds in the central seven-carbon chain contribute to the curcumin -mediated anti-IAV activity.en_US
dc.description.tableofcontents目次 第一章 文獻探討 3 第一節 流行性感冒病毒簡介 3 第二節 流行性感冒病毒特性 4 第三節 流感病毒結構 4 第四節 流感病毒生活史 (圖二) 8 第五節 流感病毒預防接種與抗流感藥物的治療 9 第六節 Curcumin (薑黃素)與其結構類似物 11 ㄧ、Curcumin簡介 12 二、Curcumin生物特性 12 三、Curcumin抗癌能力 13 四、curcumin抗病毒能力研究 14 五、Curcumin與其結構類似物 15 第二章 材料與方法 19 第一節 實驗材料與基本步驟 19 ㄧ、細胞 19 二、病毒株: 19 第二節 重要實驗設計與步驟 20 一、病毒斑分析(plaque assay) 20 二、病毒斑減低分析(plaque reduction assay) 21 三、血球凝集實驗 (Hemagglutination test ; HA test) 21 四、血球凝集抑制實驗 (Hemagglutination inhibition test ; HI test) 22 五、病毒TCID50測試 22 六、ARV病毒抑制測試 22 七、以time-of-drug addition方式測試藥物對PR8病毒感染影響 22 八、免疫螢光分析法 (Immunofluorescence assay ; IFA) 23 九、西方墨點法 (Western Blot analysis) 23 十、Glutathion (GSH)競爭curcumin與病毒蛋白質結合測試 24 第三章 結果 25 第一節 比較curcumin對於流感病毒 (strain PR8;以下簡稱PR8)與Avian reovirus的效力 25 第二節 Curcumin結構類似物的抗流感病毒能力 25 第三節 探討curcumin結構類似物對病毒感染不同時期影響 26 第四節 探討curcumin結構類似物對病毒蛋白質生成之影響 27 第五節 探討curcumin類似物是否可以抑制流感病毒HA 的活性 28 第六節 Curcumin (及類似物)是否藉由Michael addition conjugation影響到病毒感染 28 第四章 討論 30 參考文獻 34 附錄 57zh_TW
dc.subjectInfluenza virusen_US
dc.subjectplaque assayen_US
dc.subjectplaque reduction assayen_US
dc.subjectInhibition of hemagglutinationen_US
dc.titleComparative analysis of curcumin analogues on anti-influenza virus activityen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:微生物暨公共衛生學研究所


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.